Metamath Proof Explorer


Theorem mptctf

Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypothesis mptctf.1 𝑥 𝐴
Assertion mptctf ( 𝐴 ≼ ω → ( 𝑥𝐴𝐵 ) ≼ ω )

Proof

Step Hyp Ref Expression
1 mptctf.1 𝑥 𝐴
2 funmpt Fun ( 𝑥𝐴𝐵 )
3 ctex ( 𝐴 ≼ ω → 𝐴 ∈ V )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 4 dmmpt dom ( 𝑥𝐴𝐵 ) = { 𝑥𝐴𝐵 ∈ V }
6 df-rab { 𝑥𝐴𝐵 ∈ V } = { 𝑥 ∣ ( 𝑥𝐴𝐵 ∈ V ) }
7 simpl ( ( 𝑥𝐴𝐵 ∈ V ) → 𝑥𝐴 )
8 7 ss2abi { 𝑥 ∣ ( 𝑥𝐴𝐵 ∈ V ) } ⊆ { 𝑥𝑥𝐴 }
9 1 abid2f { 𝑥𝑥𝐴 } = 𝐴
10 8 9 sseqtri { 𝑥 ∣ ( 𝑥𝐴𝐵 ∈ V ) } ⊆ 𝐴
11 6 10 eqsstri { 𝑥𝐴𝐵 ∈ V } ⊆ 𝐴
12 5 11 eqsstri dom ( 𝑥𝐴𝐵 ) ⊆ 𝐴
13 ssdomg ( 𝐴 ∈ V → ( dom ( 𝑥𝐴𝐵 ) ⊆ 𝐴 → dom ( 𝑥𝐴𝐵 ) ≼ 𝐴 ) )
14 3 12 13 mpisyl ( 𝐴 ≼ ω → dom ( 𝑥𝐴𝐵 ) ≼ 𝐴 )
15 domtr ( ( dom ( 𝑥𝐴𝐵 ) ≼ 𝐴𝐴 ≼ ω ) → dom ( 𝑥𝐴𝐵 ) ≼ ω )
16 14 15 mpancom ( 𝐴 ≼ ω → dom ( 𝑥𝐴𝐵 ) ≼ ω )
17 funfn ( Fun ( 𝑥𝐴𝐵 ) ↔ ( 𝑥𝐴𝐵 ) Fn dom ( 𝑥𝐴𝐵 ) )
18 fnct ( ( ( 𝑥𝐴𝐵 ) Fn dom ( 𝑥𝐴𝐵 ) ∧ dom ( 𝑥𝐴𝐵 ) ≼ ω ) → ( 𝑥𝐴𝐵 ) ≼ ω )
19 17 18 sylanb ( ( Fun ( 𝑥𝐴𝐵 ) ∧ dom ( 𝑥𝐴𝐵 ) ≼ ω ) → ( 𝑥𝐴𝐵 ) ≼ ω )
20 2 16 19 sylancr ( 𝐴 ≼ ω → ( 𝑥𝐴𝐵 ) ≼ ω )