Step |
Hyp |
Ref |
Expression |
1 |
|
mptctf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
3 |
|
ctex |
⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
5 |
4
|
dmmpt |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } |
6 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) } |
7 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → 𝑥 ∈ 𝐴 ) |
8 |
7
|
ss2abi |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) } ⊆ { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
9 |
1
|
abid2f |
⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 |
10 |
8 9
|
sseqtri |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) } ⊆ 𝐴 |
11 |
6 10
|
eqsstri |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ⊆ 𝐴 |
12 |
5 11
|
eqsstri |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 |
13 |
|
ssdomg |
⊢ ( 𝐴 ∈ V → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ 𝐴 ) ) |
14 |
3 12 13
|
mpisyl |
⊢ ( 𝐴 ≼ ω → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ 𝐴 ) |
15 |
|
domtr |
⊢ ( ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ω ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
16 |
14 15
|
mpancom |
⊢ ( 𝐴 ≼ ω → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
17 |
|
funfn |
⊢ ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
18 |
|
fnct |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
19 |
17 18
|
sylanb |
⊢ ( ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
20 |
2 16 19
|
sylancr |
⊢ ( 𝐴 ≼ ω → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |