Metamath Proof Explorer
		
		
		
		Description:  Inference of abstraction subclass from implication.  (Contributed by NM, 31-Mar-1995)  Avoid ax-8 , ax-10 , ax-11 , ax-12 .  (Revised by GG, 28-Jun-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | ss2abi.1 | ⊢ ( 𝜑  →  𝜓 ) | 
				
					|  | Assertion | ss2abi | ⊢  { 𝑥  ∣  𝜑 }  ⊆  { 𝑥  ∣  𝜓 } | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ss2abi.1 | ⊢ ( 𝜑  →  𝜓 ) | 
						
							| 2 |  | tru | ⊢ ⊤ | 
						
							| 3 | 1 | a1i | ⊢ ( ⊤  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 4 | 3 | ss2abdv | ⊢ ( ⊤  →  { 𝑥  ∣  𝜑 }  ⊆  { 𝑥  ∣  𝜓 } ) | 
						
							| 5 | 2 4 | ax-mp | ⊢ { 𝑥  ∣  𝜑 }  ⊆  { 𝑥  ∣  𝜓 } |