Metamath Proof Explorer


Theorem mptctf

Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypothesis mptctf.1
|- F/_ x A
Assertion mptctf
|- ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om )

Proof

Step Hyp Ref Expression
1 mptctf.1
 |-  F/_ x A
2 funmpt
 |-  Fun ( x e. A |-> B )
3 ctex
 |-  ( A ~<_ _om -> A e. _V )
4 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
5 4 dmmpt
 |-  dom ( x e. A |-> B ) = { x e. A | B e. _V }
6 df-rab
 |-  { x e. A | B e. _V } = { x | ( x e. A /\ B e. _V ) }
7 simpl
 |-  ( ( x e. A /\ B e. _V ) -> x e. A )
8 7 ss2abi
 |-  { x | ( x e. A /\ B e. _V ) } C_ { x | x e. A }
9 1 abid2f
 |-  { x | x e. A } = A
10 8 9 sseqtri
 |-  { x | ( x e. A /\ B e. _V ) } C_ A
11 6 10 eqsstri
 |-  { x e. A | B e. _V } C_ A
12 5 11 eqsstri
 |-  dom ( x e. A |-> B ) C_ A
13 ssdomg
 |-  ( A e. _V -> ( dom ( x e. A |-> B ) C_ A -> dom ( x e. A |-> B ) ~<_ A ) )
14 3 12 13 mpisyl
 |-  ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ A )
15 domtr
 |-  ( ( dom ( x e. A |-> B ) ~<_ A /\ A ~<_ _om ) -> dom ( x e. A |-> B ) ~<_ _om )
16 14 15 mpancom
 |-  ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ _om )
17 funfn
 |-  ( Fun ( x e. A |-> B ) <-> ( x e. A |-> B ) Fn dom ( x e. A |-> B ) )
18 fnct
 |-  ( ( ( x e. A |-> B ) Fn dom ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om )
19 17 18 sylanb
 |-  ( ( Fun ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om )
20 2 16 19 sylancr
 |-  ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om )