Description: An image set of a countable set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mptctf.1 | |- F/_ x A |
|
Assertion | abrexctf | |- ( A ~<_ _om -> { y | E. x e. A y = B } ~<_ _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptctf.1 | |- F/_ x A |
|
2 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
3 | 2 | rnmpt | |- ran ( x e. A |-> B ) = { y | E. x e. A y = B } |
4 | 1 | mptctf | |- ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om ) |
5 | rnct | |- ( ( x e. A |-> B ) ~<_ _om -> ran ( x e. A |-> B ) ~<_ _om ) |
|
6 | 4 5 | syl | |- ( A ~<_ _om -> ran ( x e. A |-> B ) ~<_ _om ) |
7 | 3 6 | eqbrtrrid | |- ( A ~<_ _om -> { y | E. x e. A y = B } ~<_ _om ) |