Metamath Proof Explorer


Theorem abrexctf

Description: An image set of a countable set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypothesis mptctf.1
|- F/_ x A
Assertion abrexctf
|- ( A ~<_ _om -> { y | E. x e. A y = B } ~<_ _om )

Proof

Step Hyp Ref Expression
1 mptctf.1
 |-  F/_ x A
2 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
3 2 rnmpt
 |-  ran ( x e. A |-> B ) = { y | E. x e. A y = B }
4 1 mptctf
 |-  ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om )
5 rnct
 |-  ( ( x e. A |-> B ) ~<_ _om -> ran ( x e. A |-> B ) ~<_ _om )
6 4 5 syl
 |-  ( A ~<_ _om -> ran ( x e. A |-> B ) ~<_ _om )
7 3 6 eqbrtrrid
 |-  ( A ~<_ _om -> { y | E. x e. A y = B } ~<_ _om )