Step |
Hyp |
Ref |
Expression |
1 |
|
brdom2 |
|- ( A ~<_ _om <-> ( A ~< _om \/ A ~~ _om ) ) |
2 |
|
nfv |
|- F/ g ( A ~< _om /\ Z e. V /\ -. Z e. A ) |
3 |
|
nfv |
|- F/ g E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) |
4 |
|
isfinite2 |
|- ( A ~< _om -> A e. Fin ) |
5 |
|
isfinite4 |
|- ( A e. Fin <-> ( 1 ... ( # ` A ) ) ~~ A ) |
6 |
4 5
|
sylib |
|- ( A ~< _om -> ( 1 ... ( # ` A ) ) ~~ A ) |
7 |
6
|
adantr |
|- ( ( A ~< _om /\ Z e. V ) -> ( 1 ... ( # ` A ) ) ~~ A ) |
8 |
|
bren |
|- ( ( 1 ... ( # ` A ) ) ~~ A <-> E. g g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
9 |
7 8
|
sylib |
|- ( ( A ~< _om /\ Z e. V ) -> E. g g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
10 |
9
|
3adant3 |
|- ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) -> E. g g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
11 |
|
f1of |
|- ( g : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> g : ( 1 ... ( # ` A ) ) --> A ) |
12 |
11
|
adantl |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> g : ( 1 ... ( # ` A ) ) --> A ) |
13 |
|
fconstmpt |
|- ( ( NN \ ( 1 ... ( # ` A ) ) ) X. { Z } ) = ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) |
14 |
13
|
eqcomi |
|- ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) = ( ( NN \ ( 1 ... ( # ` A ) ) ) X. { Z } ) |
15 |
|
simplr |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> Z e. V ) |
16 |
|
fconst2g |
|- ( Z e. V -> ( ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) : ( NN \ ( 1 ... ( # ` A ) ) ) --> { Z } <-> ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) = ( ( NN \ ( 1 ... ( # ` A ) ) ) X. { Z } ) ) ) |
17 |
15 16
|
syl |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) : ( NN \ ( 1 ... ( # ` A ) ) ) --> { Z } <-> ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) = ( ( NN \ ( 1 ... ( # ` A ) ) ) X. { Z } ) ) ) |
18 |
14 17
|
mpbiri |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) : ( NN \ ( 1 ... ( # ` A ) ) ) --> { Z } ) |
19 |
|
disjdif |
|- ( ( 1 ... ( # ` A ) ) i^i ( NN \ ( 1 ... ( # ` A ) ) ) ) = (/) |
20 |
19
|
a1i |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( ( 1 ... ( # ` A ) ) i^i ( NN \ ( 1 ... ( # ` A ) ) ) ) = (/) ) |
21 |
|
fun |
|- ( ( ( g : ( 1 ... ( # ` A ) ) --> A /\ ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) : ( NN \ ( 1 ... ( # ` A ) ) ) --> { Z } ) /\ ( ( 1 ... ( # ` A ) ) i^i ( NN \ ( 1 ... ( # ` A ) ) ) ) = (/) ) -> ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) : ( ( 1 ... ( # ` A ) ) u. ( NN \ ( 1 ... ( # ` A ) ) ) ) --> ( A u. { Z } ) ) |
22 |
12 18 20 21
|
syl21anc |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) : ( ( 1 ... ( # ` A ) ) u. ( NN \ ( 1 ... ( # ` A ) ) ) ) --> ( A u. { Z } ) ) |
23 |
|
fz1ssnn |
|- ( 1 ... ( # ` A ) ) C_ NN |
24 |
|
undif |
|- ( ( 1 ... ( # ` A ) ) C_ NN <-> ( ( 1 ... ( # ` A ) ) u. ( NN \ ( 1 ... ( # ` A ) ) ) ) = NN ) |
25 |
23 24
|
mpbi |
|- ( ( 1 ... ( # ` A ) ) u. ( NN \ ( 1 ... ( # ` A ) ) ) ) = NN |
26 |
25
|
feq2i |
|- ( ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) : ( ( 1 ... ( # ` A ) ) u. ( NN \ ( 1 ... ( # ` A ) ) ) ) --> ( A u. { Z } ) <-> ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) : NN --> ( A u. { Z } ) ) |
27 |
22 26
|
sylib |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) : NN --> ( A u. { Z } ) ) |
28 |
27
|
3adantl3 |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) : NN --> ( A u. { Z } ) ) |
29 |
|
ssid |
|- A C_ A |
30 |
|
simpr |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
31 |
|
f1ofo |
|- ( g : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> g : ( 1 ... ( # ` A ) ) -onto-> A ) |
32 |
|
forn |
|- ( g : ( 1 ... ( # ` A ) ) -onto-> A -> ran g = A ) |
33 |
30 31 32
|
3syl |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ran g = A ) |
34 |
29 33
|
sseqtrrid |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> A C_ ran g ) |
35 |
34
|
orcd |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( A C_ ran g \/ A C_ ran ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) ) |
36 |
|
ssun |
|- ( ( A C_ ran g \/ A C_ ran ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) -> A C_ ( ran g u. ran ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) ) |
37 |
35 36
|
syl |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> A C_ ( ran g u. ran ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) ) |
38 |
|
rnun |
|- ran ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) = ( ran g u. ran ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |
39 |
37 38
|
sseqtrrdi |
|- ( ( ( A ~< _om /\ Z e. V ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> A C_ ran ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) ) |
40 |
39
|
3adantl3 |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> A C_ ran ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) ) |
41 |
|
dff1o3 |
|- ( g : ( 1 ... ( # ` A ) ) -1-1-onto-> A <-> ( g : ( 1 ... ( # ` A ) ) -onto-> A /\ Fun `' g ) ) |
42 |
41
|
simprbi |
|- ( g : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> Fun `' g ) |
43 |
42
|
adantl |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> Fun `' g ) |
44 |
|
cnvun |
|- `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) = ( `' g u. `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |
45 |
44
|
reseq1i |
|- ( `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) = ( ( `' g u. `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) |
46 |
|
resundir |
|- ( ( `' g u. `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) = ( ( `' g |` A ) u. ( `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) |` A ) ) |
47 |
45 46
|
eqtri |
|- ( `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) = ( ( `' g |` A ) u. ( `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) |` A ) ) |
48 |
|
dff1o4 |
|- ( g : ( 1 ... ( # ` A ) ) -1-1-onto-> A <-> ( g Fn ( 1 ... ( # ` A ) ) /\ `' g Fn A ) ) |
49 |
48
|
simprbi |
|- ( g : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> `' g Fn A ) |
50 |
|
fnresdm |
|- ( `' g Fn A -> ( `' g |` A ) = `' g ) |
51 |
49 50
|
syl |
|- ( g : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( `' g |` A ) = `' g ) |
52 |
51
|
adantl |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( `' g |` A ) = `' g ) |
53 |
|
simpl3 |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> -. Z e. A ) |
54 |
14
|
cnveqi |
|- `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) = `' ( ( NN \ ( 1 ... ( # ` A ) ) ) X. { Z } ) |
55 |
|
cnvxp |
|- `' ( ( NN \ ( 1 ... ( # ` A ) ) ) X. { Z } ) = ( { Z } X. ( NN \ ( 1 ... ( # ` A ) ) ) ) |
56 |
54 55
|
eqtri |
|- `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) = ( { Z } X. ( NN \ ( 1 ... ( # ` A ) ) ) ) |
57 |
56
|
reseq1i |
|- ( `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) |` A ) = ( ( { Z } X. ( NN \ ( 1 ... ( # ` A ) ) ) ) |` A ) |
58 |
|
incom |
|- ( A i^i { Z } ) = ( { Z } i^i A ) |
59 |
|
disjsn |
|- ( ( A i^i { Z } ) = (/) <-> -. Z e. A ) |
60 |
59
|
biimpri |
|- ( -. Z e. A -> ( A i^i { Z } ) = (/) ) |
61 |
58 60
|
eqtr3id |
|- ( -. Z e. A -> ( { Z } i^i A ) = (/) ) |
62 |
|
xpdisjres |
|- ( ( { Z } i^i A ) = (/) -> ( ( { Z } X. ( NN \ ( 1 ... ( # ` A ) ) ) ) |` A ) = (/) ) |
63 |
61 62
|
syl |
|- ( -. Z e. A -> ( ( { Z } X. ( NN \ ( 1 ... ( # ` A ) ) ) ) |` A ) = (/) ) |
64 |
57 63
|
syl5eq |
|- ( -. Z e. A -> ( `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) |` A ) = (/) ) |
65 |
53 64
|
syl |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) |` A ) = (/) ) |
66 |
52 65
|
uneq12d |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( ( `' g |` A ) u. ( `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) |` A ) ) = ( `' g u. (/) ) ) |
67 |
|
un0 |
|- ( `' g u. (/) ) = `' g |
68 |
66 67
|
eqtrdi |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( ( `' g |` A ) u. ( `' ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) |` A ) ) = `' g ) |
69 |
47 68
|
syl5eq |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) = `' g ) |
70 |
69
|
funeqd |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( Fun ( `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) <-> Fun `' g ) ) |
71 |
43 70
|
mpbird |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> Fun ( `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) ) |
72 |
|
vex |
|- g e. _V |
73 |
|
nnex |
|- NN e. _V |
74 |
|
difexg |
|- ( NN e. _V -> ( NN \ ( 1 ... ( # ` A ) ) ) e. _V ) |
75 |
73 74
|
ax-mp |
|- ( NN \ ( 1 ... ( # ` A ) ) ) e. _V |
76 |
75
|
mptex |
|- ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) e. _V |
77 |
72 76
|
unex |
|- ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) e. _V |
78 |
|
feq1 |
|- ( f = ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) -> ( f : NN --> ( A u. { Z } ) <-> ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) : NN --> ( A u. { Z } ) ) ) |
79 |
|
rneq |
|- ( f = ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) -> ran f = ran ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) ) |
80 |
79
|
sseq2d |
|- ( f = ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) -> ( A C_ ran f <-> A C_ ran ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) ) ) |
81 |
|
cnveq |
|- ( f = ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) -> `' f = `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) ) |
82 |
|
eqidd |
|- ( f = ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) -> A = A ) |
83 |
81 82
|
reseq12d |
|- ( f = ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) -> ( `' f |` A ) = ( `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) ) |
84 |
83
|
funeqd |
|- ( f = ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) -> ( Fun ( `' f |` A ) <-> Fun ( `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) ) ) |
85 |
78 80 84
|
3anbi123d |
|- ( f = ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) -> ( ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) <-> ( ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) : NN --> ( A u. { Z } ) /\ A C_ ran ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) /\ Fun ( `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) ) ) ) |
86 |
77 85
|
spcev |
|- ( ( ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) : NN --> ( A u. { Z } ) /\ A C_ ran ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) /\ Fun ( `' ( g u. ( x e. ( NN \ ( 1 ... ( # ` A ) ) ) |-> Z ) ) |` A ) ) -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |
87 |
28 40 71 86
|
syl3anc |
|- ( ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) /\ g : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |
88 |
87
|
ex |
|- ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) -> ( g : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) ) |
89 |
2 3 10 88
|
exlimimdd |
|- ( ( A ~< _om /\ Z e. V /\ -. Z e. A ) -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |
90 |
89
|
3expia |
|- ( ( A ~< _om /\ Z e. V ) -> ( -. Z e. A -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) ) |
91 |
|
nnenom |
|- NN ~~ _om |
92 |
|
simpl |
|- ( ( A ~~ _om /\ Z e. V ) -> A ~~ _om ) |
93 |
92
|
ensymd |
|- ( ( A ~~ _om /\ Z e. V ) -> _om ~~ A ) |
94 |
|
entr |
|- ( ( NN ~~ _om /\ _om ~~ A ) -> NN ~~ A ) |
95 |
91 93 94
|
sylancr |
|- ( ( A ~~ _om /\ Z e. V ) -> NN ~~ A ) |
96 |
|
bren |
|- ( NN ~~ A <-> E. f f : NN -1-1-onto-> A ) |
97 |
95 96
|
sylib |
|- ( ( A ~~ _om /\ Z e. V ) -> E. f f : NN -1-1-onto-> A ) |
98 |
|
nfv |
|- F/ f ( A ~~ _om /\ Z e. V ) |
99 |
|
simpr |
|- ( ( ( A ~~ _om /\ Z e. V ) /\ f : NN -1-1-onto-> A ) -> f : NN -1-1-onto-> A ) |
100 |
|
f1of |
|- ( f : NN -1-1-onto-> A -> f : NN --> A ) |
101 |
|
ssun1 |
|- A C_ ( A u. { Z } ) |
102 |
|
fss |
|- ( ( f : NN --> A /\ A C_ ( A u. { Z } ) ) -> f : NN --> ( A u. { Z } ) ) |
103 |
101 102
|
mpan2 |
|- ( f : NN --> A -> f : NN --> ( A u. { Z } ) ) |
104 |
99 100 103
|
3syl |
|- ( ( ( A ~~ _om /\ Z e. V ) /\ f : NN -1-1-onto-> A ) -> f : NN --> ( A u. { Z } ) ) |
105 |
|
f1ofo |
|- ( f : NN -1-1-onto-> A -> f : NN -onto-> A ) |
106 |
|
forn |
|- ( f : NN -onto-> A -> ran f = A ) |
107 |
99 105 106
|
3syl |
|- ( ( ( A ~~ _om /\ Z e. V ) /\ f : NN -1-1-onto-> A ) -> ran f = A ) |
108 |
29 107
|
sseqtrrid |
|- ( ( ( A ~~ _om /\ Z e. V ) /\ f : NN -1-1-onto-> A ) -> A C_ ran f ) |
109 |
|
f1ocnv |
|- ( f : NN -1-1-onto-> A -> `' f : A -1-1-onto-> NN ) |
110 |
|
f1of1 |
|- ( `' f : A -1-1-onto-> NN -> `' f : A -1-1-> NN ) |
111 |
99 109 110
|
3syl |
|- ( ( ( A ~~ _om /\ Z e. V ) /\ f : NN -1-1-onto-> A ) -> `' f : A -1-1-> NN ) |
112 |
|
f1ores |
|- ( ( `' f : A -1-1-> NN /\ A C_ A ) -> ( `' f |` A ) : A -1-1-onto-> ( `' f " A ) ) |
113 |
29 112
|
mpan2 |
|- ( `' f : A -1-1-> NN -> ( `' f |` A ) : A -1-1-onto-> ( `' f " A ) ) |
114 |
|
f1ofun |
|- ( ( `' f |` A ) : A -1-1-onto-> ( `' f " A ) -> Fun ( `' f |` A ) ) |
115 |
111 113 114
|
3syl |
|- ( ( ( A ~~ _om /\ Z e. V ) /\ f : NN -1-1-onto-> A ) -> Fun ( `' f |` A ) ) |
116 |
104 108 115
|
3jca |
|- ( ( ( A ~~ _om /\ Z e. V ) /\ f : NN -1-1-onto-> A ) -> ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |
117 |
116
|
ex |
|- ( ( A ~~ _om /\ Z e. V ) -> ( f : NN -1-1-onto-> A -> ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) ) |
118 |
98 117
|
eximd |
|- ( ( A ~~ _om /\ Z e. V ) -> ( E. f f : NN -1-1-onto-> A -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) ) |
119 |
97 118
|
mpd |
|- ( ( A ~~ _om /\ Z e. V ) -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |
120 |
119
|
a1d |
|- ( ( A ~~ _om /\ Z e. V ) -> ( -. Z e. A -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) ) |
121 |
90 120
|
jaoian |
|- ( ( ( A ~< _om \/ A ~~ _om ) /\ Z e. V ) -> ( -. Z e. A -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) ) |
122 |
121
|
3impia |
|- ( ( ( A ~< _om \/ A ~~ _om ) /\ Z e. V /\ -. Z e. A ) -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |
123 |
1 122
|
syl3an1b |
|- ( ( A ~<_ _om /\ Z e. V /\ -. Z e. A ) -> E. f ( f : NN --> ( A u. { Z } ) /\ A C_ ran f /\ Fun ( `' f |` A ) ) ) |