Metamath Proof Explorer


Theorem padct

Description: Index a countable set with integers and pad with Z . (Contributed by Thierry Arnoux, 1-Jun-2020)

Ref Expression
Assertion padct A ω Z V ¬ Z A f f : A Z A ran f Fun f -1 A

Proof

Step Hyp Ref Expression
1 brdom2 A ω A ω A ω
2 nfv g A ω Z V ¬ Z A
3 nfv g f f : A Z A ran f Fun f -1 A
4 isfinite2 A ω A Fin
5 isfinite4 A Fin 1 A A
6 4 5 sylib A ω 1 A A
7 6 adantr A ω Z V 1 A A
8 bren 1 A A g g : 1 A 1-1 onto A
9 7 8 sylib A ω Z V g g : 1 A 1-1 onto A
10 9 3adant3 A ω Z V ¬ Z A g g : 1 A 1-1 onto A
11 f1of g : 1 A 1-1 onto A g : 1 A A
12 11 adantl A ω Z V g : 1 A 1-1 onto A g : 1 A A
13 fconstmpt 1 A × Z = x 1 A Z
14 13 eqcomi x 1 A Z = 1 A × Z
15 simplr A ω Z V g : 1 A 1-1 onto A Z V
16 fconst2g Z V x 1 A Z : 1 A Z x 1 A Z = 1 A × Z
17 15 16 syl A ω Z V g : 1 A 1-1 onto A x 1 A Z : 1 A Z x 1 A Z = 1 A × Z
18 14 17 mpbiri A ω Z V g : 1 A 1-1 onto A x 1 A Z : 1 A Z
19 disjdif 1 A 1 A =
20 19 a1i A ω Z V g : 1 A 1-1 onto A 1 A 1 A =
21 fun g : 1 A A x 1 A Z : 1 A Z 1 A 1 A = g x 1 A Z : 1 A 1 A A Z
22 12 18 20 21 syl21anc A ω Z V g : 1 A 1-1 onto A g x 1 A Z : 1 A 1 A A Z
23 fz1ssnn 1 A
24 undif 1 A 1 A 1 A =
25 23 24 mpbi 1 A 1 A =
26 25 feq2i g x 1 A Z : 1 A 1 A A Z g x 1 A Z : A Z
27 22 26 sylib A ω Z V g : 1 A 1-1 onto A g x 1 A Z : A Z
28 27 3adantl3 A ω Z V ¬ Z A g : 1 A 1-1 onto A g x 1 A Z : A Z
29 ssid A A
30 simpr A ω Z V g : 1 A 1-1 onto A g : 1 A 1-1 onto A
31 f1ofo g : 1 A 1-1 onto A g : 1 A onto A
32 forn g : 1 A onto A ran g = A
33 30 31 32 3syl A ω Z V g : 1 A 1-1 onto A ran g = A
34 29 33 sseqtrrid A ω Z V g : 1 A 1-1 onto A A ran g
35 34 orcd A ω Z V g : 1 A 1-1 onto A A ran g A ran x 1 A Z
36 ssun A ran g A ran x 1 A Z A ran g ran x 1 A Z
37 35 36 syl A ω Z V g : 1 A 1-1 onto A A ran g ran x 1 A Z
38 rnun ran g x 1 A Z = ran g ran x 1 A Z
39 37 38 sseqtrrdi A ω Z V g : 1 A 1-1 onto A A ran g x 1 A Z
40 39 3adantl3 A ω Z V ¬ Z A g : 1 A 1-1 onto A A ran g x 1 A Z
41 dff1o3 g : 1 A 1-1 onto A g : 1 A onto A Fun g -1
42 41 simprbi g : 1 A 1-1 onto A Fun g -1
43 42 adantl A ω Z V ¬ Z A g : 1 A 1-1 onto A Fun g -1
44 cnvun g x 1 A Z -1 = g -1 x 1 A Z -1
45 44 reseq1i g x 1 A Z -1 A = g -1 x 1 A Z -1 A
46 resundir g -1 x 1 A Z -1 A = g -1 A x 1 A Z -1 A
47 45 46 eqtri g x 1 A Z -1 A = g -1 A x 1 A Z -1 A
48 dff1o4 g : 1 A 1-1 onto A g Fn 1 A g -1 Fn A
49 48 simprbi g : 1 A 1-1 onto A g -1 Fn A
50 fnresdm g -1 Fn A g -1 A = g -1
51 49 50 syl g : 1 A 1-1 onto A g -1 A = g -1
52 51 adantl A ω Z V ¬ Z A g : 1 A 1-1 onto A g -1 A = g -1
53 simpl3 A ω Z V ¬ Z A g : 1 A 1-1 onto A ¬ Z A
54 14 cnveqi x 1 A Z -1 = 1 A × Z -1
55 cnvxp 1 A × Z -1 = Z × 1 A
56 54 55 eqtri x 1 A Z -1 = Z × 1 A
57 56 reseq1i x 1 A Z -1 A = Z × 1 A A
58 incom A Z = Z A
59 disjsn A Z = ¬ Z A
60 59 biimpri ¬ Z A A Z =
61 58 60 eqtr3id ¬ Z A Z A =
62 xpdisjres Z A = Z × 1 A A =
63 61 62 syl ¬ Z A Z × 1 A A =
64 57 63 syl5eq ¬ Z A x 1 A Z -1 A =
65 53 64 syl A ω Z V ¬ Z A g : 1 A 1-1 onto A x 1 A Z -1 A =
66 52 65 uneq12d A ω Z V ¬ Z A g : 1 A 1-1 onto A g -1 A x 1 A Z -1 A = g -1
67 un0 g -1 = g -1
68 66 67 eqtrdi A ω Z V ¬ Z A g : 1 A 1-1 onto A g -1 A x 1 A Z -1 A = g -1
69 47 68 syl5eq A ω Z V ¬ Z A g : 1 A 1-1 onto A g x 1 A Z -1 A = g -1
70 69 funeqd A ω Z V ¬ Z A g : 1 A 1-1 onto A Fun g x 1 A Z -1 A Fun g -1
71 43 70 mpbird A ω Z V ¬ Z A g : 1 A 1-1 onto A Fun g x 1 A Z -1 A
72 vex g V
73 nnex V
74 difexg V 1 A V
75 73 74 ax-mp 1 A V
76 75 mptex x 1 A Z V
77 72 76 unex g x 1 A Z V
78 feq1 f = g x 1 A Z f : A Z g x 1 A Z : A Z
79 rneq f = g x 1 A Z ran f = ran g x 1 A Z
80 79 sseq2d f = g x 1 A Z A ran f A ran g x 1 A Z
81 cnveq f = g x 1 A Z f -1 = g x 1 A Z -1
82 eqidd f = g x 1 A Z A = A
83 81 82 reseq12d f = g x 1 A Z f -1 A = g x 1 A Z -1 A
84 83 funeqd f = g x 1 A Z Fun f -1 A Fun g x 1 A Z -1 A
85 78 80 84 3anbi123d f = g x 1 A Z f : A Z A ran f Fun f -1 A g x 1 A Z : A Z A ran g x 1 A Z Fun g x 1 A Z -1 A
86 77 85 spcev g x 1 A Z : A Z A ran g x 1 A Z Fun g x 1 A Z -1 A f f : A Z A ran f Fun f -1 A
87 28 40 71 86 syl3anc A ω Z V ¬ Z A g : 1 A 1-1 onto A f f : A Z A ran f Fun f -1 A
88 87 ex A ω Z V ¬ Z A g : 1 A 1-1 onto A f f : A Z A ran f Fun f -1 A
89 2 3 10 88 exlimimdd A ω Z V ¬ Z A f f : A Z A ran f Fun f -1 A
90 89 3expia A ω Z V ¬ Z A f f : A Z A ran f Fun f -1 A
91 nnenom ω
92 simpl A ω Z V A ω
93 92 ensymd A ω Z V ω A
94 entr ω ω A A
95 91 93 94 sylancr A ω Z V A
96 bren A f f : 1-1 onto A
97 95 96 sylib A ω Z V f f : 1-1 onto A
98 nfv f A ω Z V
99 simpr A ω Z V f : 1-1 onto A f : 1-1 onto A
100 f1of f : 1-1 onto A f : A
101 ssun1 A A Z
102 fss f : A A A Z f : A Z
103 101 102 mpan2 f : A f : A Z
104 99 100 103 3syl A ω Z V f : 1-1 onto A f : A Z
105 f1ofo f : 1-1 onto A f : onto A
106 forn f : onto A ran f = A
107 99 105 106 3syl A ω Z V f : 1-1 onto A ran f = A
108 29 107 sseqtrrid A ω Z V f : 1-1 onto A A ran f
109 f1ocnv f : 1-1 onto A f -1 : A 1-1 onto
110 f1of1 f -1 : A 1-1 onto f -1 : A 1-1
111 99 109 110 3syl A ω Z V f : 1-1 onto A f -1 : A 1-1
112 f1ores f -1 : A 1-1 A A f -1 A : A 1-1 onto f -1 A
113 29 112 mpan2 f -1 : A 1-1 f -1 A : A 1-1 onto f -1 A
114 f1ofun f -1 A : A 1-1 onto f -1 A Fun f -1 A
115 111 113 114 3syl A ω Z V f : 1-1 onto A Fun f -1 A
116 104 108 115 3jca A ω Z V f : 1-1 onto A f : A Z A ran f Fun f -1 A
117 116 ex A ω Z V f : 1-1 onto A f : A Z A ran f Fun f -1 A
118 98 117 eximd A ω Z V f f : 1-1 onto A f f : A Z A ran f Fun f -1 A
119 97 118 mpd A ω Z V f f : A Z A ran f Fun f -1 A
120 119 a1d A ω Z V ¬ Z A f f : A Z A ran f Fun f -1 A
121 90 120 jaoian A ω A ω Z V ¬ Z A f f : A Z A ran f Fun f -1 A
122 121 3impia A ω A ω Z V ¬ Z A f f : A Z A ran f Fun f -1 A
123 1 122 syl3an1b A ω Z V ¬ Z A f f : A Z A ran f Fun f -1 A