Metamath Proof Explorer


Theorem reseq12d

Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses reseqd.1 φA=B
reseqd.2 φC=D
Assertion reseq12d φAC=BD

Proof

Step Hyp Ref Expression
1 reseqd.1 φA=B
2 reseqd.2 φC=D
3 1 reseq1d φAC=BC
4 2 reseq2d φBC=BD
5 3 4 eqtrd φAC=BD