Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | resundir | |- ( ( A u. B ) |` C ) = ( ( A |` C ) u. ( B |` C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir | |- ( ( A u. B ) i^i ( C X. _V ) ) = ( ( A i^i ( C X. _V ) ) u. ( B i^i ( C X. _V ) ) ) |
|
2 | df-res | |- ( ( A u. B ) |` C ) = ( ( A u. B ) i^i ( C X. _V ) ) |
|
3 | df-res | |- ( A |` C ) = ( A i^i ( C X. _V ) ) |
|
4 | df-res | |- ( B |` C ) = ( B i^i ( C X. _V ) ) |
|
5 | 3 4 | uneq12i | |- ( ( A |` C ) u. ( B |` C ) ) = ( ( A i^i ( C X. _V ) ) u. ( B i^i ( C X. _V ) ) ) |
6 | 1 2 5 | 3eqtr4i | |- ( ( A u. B ) |` C ) = ( ( A |` C ) u. ( B |` C ) ) |