Metamath Proof Explorer


Theorem indir

Description: Distributive law for intersection over union. Theorem 28 of Suppes p. 27. (Contributed by NM, 30-Sep-2002)

Ref Expression
Assertion indir
|- ( ( A u. B ) i^i C ) = ( ( A i^i C ) u. ( B i^i C ) )

Proof

Step Hyp Ref Expression
1 indi
 |-  ( C i^i ( A u. B ) ) = ( ( C i^i A ) u. ( C i^i B ) )
2 incom
 |-  ( ( A u. B ) i^i C ) = ( C i^i ( A u. B ) )
3 incom
 |-  ( A i^i C ) = ( C i^i A )
4 incom
 |-  ( B i^i C ) = ( C i^i B )
5 3 4 uneq12i
 |-  ( ( A i^i C ) u. ( B i^i C ) ) = ( ( C i^i A ) u. ( C i^i B ) )
6 1 2 5 3eqtr4i
 |-  ( ( A u. B ) i^i C ) = ( ( A i^i C ) u. ( B i^i C ) )