Description: Distributive law for intersection over union. Theorem 28 of Suppes p. 27. (Contributed by NM, 30-Sep-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | indir | |- ( ( A u. B ) i^i C ) = ( ( A i^i C ) u. ( B i^i C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi | |- ( C i^i ( A u. B ) ) = ( ( C i^i A ) u. ( C i^i B ) ) |
|
2 | incom | |- ( ( A u. B ) i^i C ) = ( C i^i ( A u. B ) ) |
|
3 | incom | |- ( A i^i C ) = ( C i^i A ) |
|
4 | incom | |- ( B i^i C ) = ( C i^i B ) |
|
5 | 3 4 | uneq12i | |- ( ( A i^i C ) u. ( B i^i C ) ) = ( ( C i^i A ) u. ( C i^i B ) ) |
6 | 1 2 5 | 3eqtr4i | |- ( ( A u. B ) i^i C ) = ( ( A i^i C ) u. ( B i^i C ) ) |