Step |
Hyp |
Ref |
Expression |
1 |
|
cnvoprabOLD.x |
|- F/ x ps |
2 |
|
cnvoprabOLD.y |
|- F/ y ps |
3 |
|
cnvoprabOLD.1 |
|- ( a = <. x , y >. -> ( ps <-> ph ) ) |
4 |
|
cnvoprabOLD.2 |
|- ( ps -> a e. ( _V X. _V ) ) |
5 |
|
excom |
|- ( E. a E. z ( w = <. a , z >. /\ ps ) <-> E. z E. a ( w = <. a , z >. /\ ps ) ) |
6 |
|
nfv |
|- F/ x w = <. a , z >. |
7 |
6 1
|
nfan |
|- F/ x ( w = <. a , z >. /\ ps ) |
8 |
7
|
nfex |
|- F/ x E. a ( w = <. a , z >. /\ ps ) |
9 |
|
nfv |
|- F/ y w = <. a , z >. |
10 |
9 2
|
nfan |
|- F/ y ( w = <. a , z >. /\ ps ) |
11 |
10
|
nfex |
|- F/ y E. a ( w = <. a , z >. /\ ps ) |
12 |
|
opex |
|- <. x , y >. e. _V |
13 |
|
opeq1 |
|- ( a = <. x , y >. -> <. a , z >. = <. <. x , y >. , z >. ) |
14 |
13
|
eqeq2d |
|- ( a = <. x , y >. -> ( w = <. a , z >. <-> w = <. <. x , y >. , z >. ) ) |
15 |
14 3
|
anbi12d |
|- ( a = <. x , y >. -> ( ( w = <. a , z >. /\ ps ) <-> ( w = <. <. x , y >. , z >. /\ ph ) ) ) |
16 |
12 15
|
spcev |
|- ( ( w = <. <. x , y >. , z >. /\ ph ) -> E. a ( w = <. a , z >. /\ ps ) ) |
17 |
11 16
|
exlimi |
|- ( E. y ( w = <. <. x , y >. , z >. /\ ph ) -> E. a ( w = <. a , z >. /\ ps ) ) |
18 |
8 17
|
exlimi |
|- ( E. x E. y ( w = <. <. x , y >. , z >. /\ ph ) -> E. a ( w = <. a , z >. /\ ps ) ) |
19 |
4
|
adantl |
|- ( ( w = <. a , z >. /\ ps ) -> a e. ( _V X. _V ) ) |
20 |
|
fvex |
|- ( 1st ` a ) e. _V |
21 |
|
fvex |
|- ( 2nd ` a ) e. _V |
22 |
|
eqcom |
|- ( ( 1st ` a ) = x <-> x = ( 1st ` a ) ) |
23 |
|
eqcom |
|- ( ( 2nd ` a ) = y <-> y = ( 2nd ` a ) ) |
24 |
22 23
|
anbi12i |
|- ( ( ( 1st ` a ) = x /\ ( 2nd ` a ) = y ) <-> ( x = ( 1st ` a ) /\ y = ( 2nd ` a ) ) ) |
25 |
|
eqopi |
|- ( ( a e. ( _V X. _V ) /\ ( ( 1st ` a ) = x /\ ( 2nd ` a ) = y ) ) -> a = <. x , y >. ) |
26 |
24 25
|
sylan2br |
|- ( ( a e. ( _V X. _V ) /\ ( x = ( 1st ` a ) /\ y = ( 2nd ` a ) ) ) -> a = <. x , y >. ) |
27 |
15
|
bicomd |
|- ( a = <. x , y >. -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( w = <. a , z >. /\ ps ) ) ) |
28 |
26 27
|
syl |
|- ( ( a e. ( _V X. _V ) /\ ( x = ( 1st ` a ) /\ y = ( 2nd ` a ) ) ) -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( w = <. a , z >. /\ ps ) ) ) |
29 |
7 10 28
|
spc2ed |
|- ( ( a e. ( _V X. _V ) /\ ( ( 1st ` a ) e. _V /\ ( 2nd ` a ) e. _V ) ) -> ( ( w = <. a , z >. /\ ps ) -> E. x E. y ( w = <. <. x , y >. , z >. /\ ph ) ) ) |
30 |
20 21 29
|
mpanr12 |
|- ( a e. ( _V X. _V ) -> ( ( w = <. a , z >. /\ ps ) -> E. x E. y ( w = <. <. x , y >. , z >. /\ ph ) ) ) |
31 |
19 30
|
mpcom |
|- ( ( w = <. a , z >. /\ ps ) -> E. x E. y ( w = <. <. x , y >. , z >. /\ ph ) ) |
32 |
31
|
exlimiv |
|- ( E. a ( w = <. a , z >. /\ ps ) -> E. x E. y ( w = <. <. x , y >. , z >. /\ ph ) ) |
33 |
18 32
|
impbii |
|- ( E. x E. y ( w = <. <. x , y >. , z >. /\ ph ) <-> E. a ( w = <. a , z >. /\ ps ) ) |
34 |
33
|
exbii |
|- ( E. z E. x E. y ( w = <. <. x , y >. , z >. /\ ph ) <-> E. z E. a ( w = <. a , z >. /\ ps ) ) |
35 |
|
exrot3 |
|- ( E. z E. x E. y ( w = <. <. x , y >. , z >. /\ ph ) <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
36 |
5 34 35
|
3bitr2ri |
|- ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> E. a E. z ( w = <. a , z >. /\ ps ) ) |
37 |
36
|
abbii |
|- { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } = { w | E. a E. z ( w = <. a , z >. /\ ps ) } |
38 |
|
df-oprab |
|- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
39 |
|
df-opab |
|- { <. a , z >. | ps } = { w | E. a E. z ( w = <. a , z >. /\ ps ) } |
40 |
37 38 39
|
3eqtr4ri |
|- { <. a , z >. | ps } = { <. <. x , y >. , z >. | ph } |
41 |
40
|
cnveqi |
|- `' { <. a , z >. | ps } = `' { <. <. x , y >. , z >. | ph } |
42 |
|
cnvopab |
|- `' { <. a , z >. | ps } = { <. z , a >. | ps } |
43 |
41 42
|
eqtr3i |
|- `' { <. <. x , y >. , z >. | ph } = { <. z , a >. | ps } |