| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1od2.1 |
|- F = ( x e. A , y e. B |-> C ) |
| 2 |
|
f1od2.2 |
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> C e. W ) |
| 3 |
|
f1od2.3 |
|- ( ( ph /\ z e. D ) -> ( I e. X /\ J e. Y ) ) |
| 4 |
|
f1od2.4 |
|- ( ph -> ( ( ( x e. A /\ y e. B ) /\ z = C ) <-> ( z e. D /\ ( x = I /\ y = J ) ) ) ) |
| 5 |
2
|
ralrimivva |
|- ( ph -> A. x e. A A. y e. B C e. W ) |
| 6 |
1
|
fnmpo |
|- ( A. x e. A A. y e. B C e. W -> F Fn ( A X. B ) ) |
| 7 |
5 6
|
syl |
|- ( ph -> F Fn ( A X. B ) ) |
| 8 |
|
opelxpi |
|- ( ( I e. X /\ J e. Y ) -> <. I , J >. e. ( X X. Y ) ) |
| 9 |
3 8
|
syl |
|- ( ( ph /\ z e. D ) -> <. I , J >. e. ( X X. Y ) ) |
| 10 |
9
|
ralrimiva |
|- ( ph -> A. z e. D <. I , J >. e. ( X X. Y ) ) |
| 11 |
|
eqid |
|- ( z e. D |-> <. I , J >. ) = ( z e. D |-> <. I , J >. ) |
| 12 |
11
|
fnmpt |
|- ( A. z e. D <. I , J >. e. ( X X. Y ) -> ( z e. D |-> <. I , J >. ) Fn D ) |
| 13 |
10 12
|
syl |
|- ( ph -> ( z e. D |-> <. I , J >. ) Fn D ) |
| 14 |
|
elxp7 |
|- ( a e. ( A X. B ) <-> ( a e. ( _V X. _V ) /\ ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) ) ) |
| 15 |
14
|
anbi1i |
|- ( ( a e. ( A X. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) <-> ( ( a e. ( _V X. _V ) /\ ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) ) |
| 16 |
|
anass |
|- ( ( ( a e. ( _V X. _V ) /\ ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) <-> ( a e. ( _V X. _V ) /\ ( ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) ) ) |
| 17 |
4
|
sbcbidv |
|- ( ph -> ( [. ( 2nd ` a ) / y ]. ( ( x e. A /\ y e. B ) /\ z = C ) <-> [. ( 2nd ` a ) / y ]. ( z e. D /\ ( x = I /\ y = J ) ) ) ) |
| 18 |
17
|
sbcbidv |
|- ( ph -> ( [. ( 1st ` a ) / x ]. [. ( 2nd ` a ) / y ]. ( ( x e. A /\ y e. B ) /\ z = C ) <-> [. ( 1st ` a ) / x ]. [. ( 2nd ` a ) / y ]. ( z e. D /\ ( x = I /\ y = J ) ) ) ) |
| 19 |
|
sbcan |
|- ( [. ( 2nd ` a ) / y ]. ( ( x e. A /\ y e. B ) /\ z = C ) <-> ( [. ( 2nd ` a ) / y ]. ( x e. A /\ y e. B ) /\ [. ( 2nd ` a ) / y ]. z = C ) ) |
| 20 |
|
sbcan |
|- ( [. ( 2nd ` a ) / y ]. ( x e. A /\ y e. B ) <-> ( [. ( 2nd ` a ) / y ]. x e. A /\ [. ( 2nd ` a ) / y ]. y e. B ) ) |
| 21 |
|
fvex |
|- ( 2nd ` a ) e. _V |
| 22 |
|
sbcg |
|- ( ( 2nd ` a ) e. _V -> ( [. ( 2nd ` a ) / y ]. x e. A <-> x e. A ) ) |
| 23 |
21 22
|
ax-mp |
|- ( [. ( 2nd ` a ) / y ]. x e. A <-> x e. A ) |
| 24 |
|
sbcel1v |
|- ( [. ( 2nd ` a ) / y ]. y e. B <-> ( 2nd ` a ) e. B ) |
| 25 |
23 24
|
anbi12i |
|- ( ( [. ( 2nd ` a ) / y ]. x e. A /\ [. ( 2nd ` a ) / y ]. y e. B ) <-> ( x e. A /\ ( 2nd ` a ) e. B ) ) |
| 26 |
20 25
|
bitri |
|- ( [. ( 2nd ` a ) / y ]. ( x e. A /\ y e. B ) <-> ( x e. A /\ ( 2nd ` a ) e. B ) ) |
| 27 |
|
sbceq2g |
|- ( ( 2nd ` a ) e. _V -> ( [. ( 2nd ` a ) / y ]. z = C <-> z = [_ ( 2nd ` a ) / y ]_ C ) ) |
| 28 |
21 27
|
ax-mp |
|- ( [. ( 2nd ` a ) / y ]. z = C <-> z = [_ ( 2nd ` a ) / y ]_ C ) |
| 29 |
26 28
|
anbi12i |
|- ( ( [. ( 2nd ` a ) / y ]. ( x e. A /\ y e. B ) /\ [. ( 2nd ` a ) / y ]. z = C ) <-> ( ( x e. A /\ ( 2nd ` a ) e. B ) /\ z = [_ ( 2nd ` a ) / y ]_ C ) ) |
| 30 |
19 29
|
bitri |
|- ( [. ( 2nd ` a ) / y ]. ( ( x e. A /\ y e. B ) /\ z = C ) <-> ( ( x e. A /\ ( 2nd ` a ) e. B ) /\ z = [_ ( 2nd ` a ) / y ]_ C ) ) |
| 31 |
30
|
sbcbii |
|- ( [. ( 1st ` a ) / x ]. [. ( 2nd ` a ) / y ]. ( ( x e. A /\ y e. B ) /\ z = C ) <-> [. ( 1st ` a ) / x ]. ( ( x e. A /\ ( 2nd ` a ) e. B ) /\ z = [_ ( 2nd ` a ) / y ]_ C ) ) |
| 32 |
|
sbcan |
|- ( [. ( 1st ` a ) / x ]. ( ( x e. A /\ ( 2nd ` a ) e. B ) /\ z = [_ ( 2nd ` a ) / y ]_ C ) <-> ( [. ( 1st ` a ) / x ]. ( x e. A /\ ( 2nd ` a ) e. B ) /\ [. ( 1st ` a ) / x ]. z = [_ ( 2nd ` a ) / y ]_ C ) ) |
| 33 |
|
sbcan |
|- ( [. ( 1st ` a ) / x ]. ( x e. A /\ ( 2nd ` a ) e. B ) <-> ( [. ( 1st ` a ) / x ]. x e. A /\ [. ( 1st ` a ) / x ]. ( 2nd ` a ) e. B ) ) |
| 34 |
|
sbcel1v |
|- ( [. ( 1st ` a ) / x ]. x e. A <-> ( 1st ` a ) e. A ) |
| 35 |
|
fvex |
|- ( 1st ` a ) e. _V |
| 36 |
|
sbcg |
|- ( ( 1st ` a ) e. _V -> ( [. ( 1st ` a ) / x ]. ( 2nd ` a ) e. B <-> ( 2nd ` a ) e. B ) ) |
| 37 |
35 36
|
ax-mp |
|- ( [. ( 1st ` a ) / x ]. ( 2nd ` a ) e. B <-> ( 2nd ` a ) e. B ) |
| 38 |
34 37
|
anbi12i |
|- ( ( [. ( 1st ` a ) / x ]. x e. A /\ [. ( 1st ` a ) / x ]. ( 2nd ` a ) e. B ) <-> ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) ) |
| 39 |
33 38
|
bitri |
|- ( [. ( 1st ` a ) / x ]. ( x e. A /\ ( 2nd ` a ) e. B ) <-> ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) ) |
| 40 |
|
sbceq2g |
|- ( ( 1st ` a ) e. _V -> ( [. ( 1st ` a ) / x ]. z = [_ ( 2nd ` a ) / y ]_ C <-> z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) ) |
| 41 |
35 40
|
ax-mp |
|- ( [. ( 1st ` a ) / x ]. z = [_ ( 2nd ` a ) / y ]_ C <-> z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) |
| 42 |
39 41
|
anbi12i |
|- ( ( [. ( 1st ` a ) / x ]. ( x e. A /\ ( 2nd ` a ) e. B ) /\ [. ( 1st ` a ) / x ]. z = [_ ( 2nd ` a ) / y ]_ C ) <-> ( ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) ) |
| 43 |
31 32 42
|
3bitri |
|- ( [. ( 1st ` a ) / x ]. [. ( 2nd ` a ) / y ]. ( ( x e. A /\ y e. B ) /\ z = C ) <-> ( ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) ) |
| 44 |
|
sbcan |
|- ( [. ( 2nd ` a ) / y ]. ( z e. D /\ ( x = I /\ y = J ) ) <-> ( [. ( 2nd ` a ) / y ]. z e. D /\ [. ( 2nd ` a ) / y ]. ( x = I /\ y = J ) ) ) |
| 45 |
|
sbcg |
|- ( ( 2nd ` a ) e. _V -> ( [. ( 2nd ` a ) / y ]. z e. D <-> z e. D ) ) |
| 46 |
21 45
|
ax-mp |
|- ( [. ( 2nd ` a ) / y ]. z e. D <-> z e. D ) |
| 47 |
|
sbcan |
|- ( [. ( 2nd ` a ) / y ]. ( x = I /\ y = J ) <-> ( [. ( 2nd ` a ) / y ]. x = I /\ [. ( 2nd ` a ) / y ]. y = J ) ) |
| 48 |
|
sbcg |
|- ( ( 2nd ` a ) e. _V -> ( [. ( 2nd ` a ) / y ]. x = I <-> x = I ) ) |
| 49 |
21 48
|
ax-mp |
|- ( [. ( 2nd ` a ) / y ]. x = I <-> x = I ) |
| 50 |
|
sbceq1g |
|- ( ( 2nd ` a ) e. _V -> ( [. ( 2nd ` a ) / y ]. y = J <-> [_ ( 2nd ` a ) / y ]_ y = J ) ) |
| 51 |
21 50
|
ax-mp |
|- ( [. ( 2nd ` a ) / y ]. y = J <-> [_ ( 2nd ` a ) / y ]_ y = J ) |
| 52 |
21
|
csbvargi |
|- [_ ( 2nd ` a ) / y ]_ y = ( 2nd ` a ) |
| 53 |
52
|
eqeq1i |
|- ( [_ ( 2nd ` a ) / y ]_ y = J <-> ( 2nd ` a ) = J ) |
| 54 |
51 53
|
bitri |
|- ( [. ( 2nd ` a ) / y ]. y = J <-> ( 2nd ` a ) = J ) |
| 55 |
49 54
|
anbi12i |
|- ( ( [. ( 2nd ` a ) / y ]. x = I /\ [. ( 2nd ` a ) / y ]. y = J ) <-> ( x = I /\ ( 2nd ` a ) = J ) ) |
| 56 |
47 55
|
bitri |
|- ( [. ( 2nd ` a ) / y ]. ( x = I /\ y = J ) <-> ( x = I /\ ( 2nd ` a ) = J ) ) |
| 57 |
46 56
|
anbi12i |
|- ( ( [. ( 2nd ` a ) / y ]. z e. D /\ [. ( 2nd ` a ) / y ]. ( x = I /\ y = J ) ) <-> ( z e. D /\ ( x = I /\ ( 2nd ` a ) = J ) ) ) |
| 58 |
44 57
|
bitri |
|- ( [. ( 2nd ` a ) / y ]. ( z e. D /\ ( x = I /\ y = J ) ) <-> ( z e. D /\ ( x = I /\ ( 2nd ` a ) = J ) ) ) |
| 59 |
58
|
sbcbii |
|- ( [. ( 1st ` a ) / x ]. [. ( 2nd ` a ) / y ]. ( z e. D /\ ( x = I /\ y = J ) ) <-> [. ( 1st ` a ) / x ]. ( z e. D /\ ( x = I /\ ( 2nd ` a ) = J ) ) ) |
| 60 |
|
sbcan |
|- ( [. ( 1st ` a ) / x ]. ( z e. D /\ ( x = I /\ ( 2nd ` a ) = J ) ) <-> ( [. ( 1st ` a ) / x ]. z e. D /\ [. ( 1st ` a ) / x ]. ( x = I /\ ( 2nd ` a ) = J ) ) ) |
| 61 |
|
sbcg |
|- ( ( 1st ` a ) e. _V -> ( [. ( 1st ` a ) / x ]. z e. D <-> z e. D ) ) |
| 62 |
35 61
|
ax-mp |
|- ( [. ( 1st ` a ) / x ]. z e. D <-> z e. D ) |
| 63 |
|
sbcan |
|- ( [. ( 1st ` a ) / x ]. ( x = I /\ ( 2nd ` a ) = J ) <-> ( [. ( 1st ` a ) / x ]. x = I /\ [. ( 1st ` a ) / x ]. ( 2nd ` a ) = J ) ) |
| 64 |
|
sbceq1g |
|- ( ( 1st ` a ) e. _V -> ( [. ( 1st ` a ) / x ]. x = I <-> [_ ( 1st ` a ) / x ]_ x = I ) ) |
| 65 |
35 64
|
ax-mp |
|- ( [. ( 1st ` a ) / x ]. x = I <-> [_ ( 1st ` a ) / x ]_ x = I ) |
| 66 |
35
|
csbvargi |
|- [_ ( 1st ` a ) / x ]_ x = ( 1st ` a ) |
| 67 |
66
|
eqeq1i |
|- ( [_ ( 1st ` a ) / x ]_ x = I <-> ( 1st ` a ) = I ) |
| 68 |
65 67
|
bitri |
|- ( [. ( 1st ` a ) / x ]. x = I <-> ( 1st ` a ) = I ) |
| 69 |
|
sbcg |
|- ( ( 1st ` a ) e. _V -> ( [. ( 1st ` a ) / x ]. ( 2nd ` a ) = J <-> ( 2nd ` a ) = J ) ) |
| 70 |
35 69
|
ax-mp |
|- ( [. ( 1st ` a ) / x ]. ( 2nd ` a ) = J <-> ( 2nd ` a ) = J ) |
| 71 |
68 70
|
anbi12i |
|- ( ( [. ( 1st ` a ) / x ]. x = I /\ [. ( 1st ` a ) / x ]. ( 2nd ` a ) = J ) <-> ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) |
| 72 |
63 71
|
bitri |
|- ( [. ( 1st ` a ) / x ]. ( x = I /\ ( 2nd ` a ) = J ) <-> ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) |
| 73 |
62 72
|
anbi12i |
|- ( ( [. ( 1st ` a ) / x ]. z e. D /\ [. ( 1st ` a ) / x ]. ( x = I /\ ( 2nd ` a ) = J ) ) <-> ( z e. D /\ ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) ) |
| 74 |
59 60 73
|
3bitri |
|- ( [. ( 1st ` a ) / x ]. [. ( 2nd ` a ) / y ]. ( z e. D /\ ( x = I /\ y = J ) ) <-> ( z e. D /\ ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) ) |
| 75 |
18 43 74
|
3bitr3g |
|- ( ph -> ( ( ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) <-> ( z e. D /\ ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) ) ) |
| 76 |
75
|
anbi2d |
|- ( ph -> ( ( a e. ( _V X. _V ) /\ ( ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) ) <-> ( a e. ( _V X. _V ) /\ ( z e. D /\ ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) ) ) ) |
| 77 |
16 76
|
bitrid |
|- ( ph -> ( ( ( a e. ( _V X. _V ) /\ ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) <-> ( a e. ( _V X. _V ) /\ ( z e. D /\ ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) ) ) ) |
| 78 |
|
xpss |
|- ( X X. Y ) C_ ( _V X. _V ) |
| 79 |
|
simprr |
|- ( ( ph /\ ( z e. D /\ a = <. I , J >. ) ) -> a = <. I , J >. ) |
| 80 |
9
|
adantrr |
|- ( ( ph /\ ( z e. D /\ a = <. I , J >. ) ) -> <. I , J >. e. ( X X. Y ) ) |
| 81 |
79 80
|
eqeltrd |
|- ( ( ph /\ ( z e. D /\ a = <. I , J >. ) ) -> a e. ( X X. Y ) ) |
| 82 |
78 81
|
sselid |
|- ( ( ph /\ ( z e. D /\ a = <. I , J >. ) ) -> a e. ( _V X. _V ) ) |
| 83 |
82
|
ex |
|- ( ph -> ( ( z e. D /\ a = <. I , J >. ) -> a e. ( _V X. _V ) ) ) |
| 84 |
83
|
pm4.71rd |
|- ( ph -> ( ( z e. D /\ a = <. I , J >. ) <-> ( a e. ( _V X. _V ) /\ ( z e. D /\ a = <. I , J >. ) ) ) ) |
| 85 |
|
eqop |
|- ( a e. ( _V X. _V ) -> ( a = <. I , J >. <-> ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) ) |
| 86 |
85
|
anbi2d |
|- ( a e. ( _V X. _V ) -> ( ( z e. D /\ a = <. I , J >. ) <-> ( z e. D /\ ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) ) ) |
| 87 |
86
|
pm5.32i |
|- ( ( a e. ( _V X. _V ) /\ ( z e. D /\ a = <. I , J >. ) ) <-> ( a e. ( _V X. _V ) /\ ( z e. D /\ ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) ) ) |
| 88 |
84 87
|
bitr2di |
|- ( ph -> ( ( a e. ( _V X. _V ) /\ ( z e. D /\ ( ( 1st ` a ) = I /\ ( 2nd ` a ) = J ) ) ) <-> ( z e. D /\ a = <. I , J >. ) ) ) |
| 89 |
77 88
|
bitrd |
|- ( ph -> ( ( ( a e. ( _V X. _V ) /\ ( ( 1st ` a ) e. A /\ ( 2nd ` a ) e. B ) ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) <-> ( z e. D /\ a = <. I , J >. ) ) ) |
| 90 |
15 89
|
bitrid |
|- ( ph -> ( ( a e. ( A X. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) <-> ( z e. D /\ a = <. I , J >. ) ) ) |
| 91 |
90
|
opabbidv |
|- ( ph -> { <. z , a >. | ( a e. ( A X. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) } = { <. z , a >. | ( z e. D /\ a = <. I , J >. ) } ) |
| 92 |
|
df-mpo |
|- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 93 |
1 92
|
eqtri |
|- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 94 |
93
|
cnveqi |
|- `' F = `' { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 95 |
|
nfv |
|- F/ i ( ( x e. A /\ y e. B ) /\ z = C ) |
| 96 |
|
nfv |
|- F/ j ( ( x e. A /\ y e. B ) /\ z = C ) |
| 97 |
|
nfv |
|- F/ x ( i e. A /\ j e. B ) |
| 98 |
|
nfcsb1v |
|- F/_ x [_ i / x ]_ [_ j / y ]_ C |
| 99 |
98
|
nfeq2 |
|- F/ x z = [_ i / x ]_ [_ j / y ]_ C |
| 100 |
97 99
|
nfan |
|- F/ x ( ( i e. A /\ j e. B ) /\ z = [_ i / x ]_ [_ j / y ]_ C ) |
| 101 |
|
nfv |
|- F/ y ( i e. A /\ j e. B ) |
| 102 |
|
nfcv |
|- F/_ y i |
| 103 |
|
nfcsb1v |
|- F/_ y [_ j / y ]_ C |
| 104 |
102 103
|
nfcsbw |
|- F/_ y [_ i / x ]_ [_ j / y ]_ C |
| 105 |
104
|
nfeq2 |
|- F/ y z = [_ i / x ]_ [_ j / y ]_ C |
| 106 |
101 105
|
nfan |
|- F/ y ( ( i e. A /\ j e. B ) /\ z = [_ i / x ]_ [_ j / y ]_ C ) |
| 107 |
|
simpl |
|- ( ( x = i /\ y = j ) -> x = i ) |
| 108 |
107
|
eleq1d |
|- ( ( x = i /\ y = j ) -> ( x e. A <-> i e. A ) ) |
| 109 |
|
simpr |
|- ( ( x = i /\ y = j ) -> y = j ) |
| 110 |
109
|
eleq1d |
|- ( ( x = i /\ y = j ) -> ( y e. B <-> j e. B ) ) |
| 111 |
108 110
|
anbi12d |
|- ( ( x = i /\ y = j ) -> ( ( x e. A /\ y e. B ) <-> ( i e. A /\ j e. B ) ) ) |
| 112 |
|
csbeq1a |
|- ( y = j -> C = [_ j / y ]_ C ) |
| 113 |
|
csbeq1a |
|- ( x = i -> [_ j / y ]_ C = [_ i / x ]_ [_ j / y ]_ C ) |
| 114 |
112 113
|
sylan9eqr |
|- ( ( x = i /\ y = j ) -> C = [_ i / x ]_ [_ j / y ]_ C ) |
| 115 |
114
|
eqeq2d |
|- ( ( x = i /\ y = j ) -> ( z = C <-> z = [_ i / x ]_ [_ j / y ]_ C ) ) |
| 116 |
111 115
|
anbi12d |
|- ( ( x = i /\ y = j ) -> ( ( ( x e. A /\ y e. B ) /\ z = C ) <-> ( ( i e. A /\ j e. B ) /\ z = [_ i / x ]_ [_ j / y ]_ C ) ) ) |
| 117 |
95 96 100 106 116
|
cbvoprab12 |
|- { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } = { <. <. i , j >. , z >. | ( ( i e. A /\ j e. B ) /\ z = [_ i / x ]_ [_ j / y ]_ C ) } |
| 118 |
117
|
cnveqi |
|- `' { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } = `' { <. <. i , j >. , z >. | ( ( i e. A /\ j e. B ) /\ z = [_ i / x ]_ [_ j / y ]_ C ) } |
| 119 |
|
eleq1 |
|- ( a = <. i , j >. -> ( a e. ( A X. B ) <-> <. i , j >. e. ( A X. B ) ) ) |
| 120 |
|
opelxp |
|- ( <. i , j >. e. ( A X. B ) <-> ( i e. A /\ j e. B ) ) |
| 121 |
119 120
|
bitrdi |
|- ( a = <. i , j >. -> ( a e. ( A X. B ) <-> ( i e. A /\ j e. B ) ) ) |
| 122 |
|
csbcom |
|- [_ ( 2nd ` a ) / j ]_ [_ i / x ]_ [_ j / y ]_ C = [_ i / x ]_ [_ ( 2nd ` a ) / j ]_ [_ j / y ]_ C |
| 123 |
|
csbcow |
|- [_ ( 2nd ` a ) / j ]_ [_ j / y ]_ C = [_ ( 2nd ` a ) / y ]_ C |
| 124 |
123
|
csbeq2i |
|- [_ i / x ]_ [_ ( 2nd ` a ) / j ]_ [_ j / y ]_ C = [_ i / x ]_ [_ ( 2nd ` a ) / y ]_ C |
| 125 |
122 124
|
eqtri |
|- [_ ( 2nd ` a ) / j ]_ [_ i / x ]_ [_ j / y ]_ C = [_ i / x ]_ [_ ( 2nd ` a ) / y ]_ C |
| 126 |
125
|
csbeq2i |
|- [_ ( 1st ` a ) / i ]_ [_ ( 2nd ` a ) / j ]_ [_ i / x ]_ [_ j / y ]_ C = [_ ( 1st ` a ) / i ]_ [_ i / x ]_ [_ ( 2nd ` a ) / y ]_ C |
| 127 |
|
csbcow |
|- [_ ( 1st ` a ) / i ]_ [_ i / x ]_ [_ ( 2nd ` a ) / y ]_ C = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C |
| 128 |
126 127
|
eqtri |
|- [_ ( 1st ` a ) / i ]_ [_ ( 2nd ` a ) / j ]_ [_ i / x ]_ [_ j / y ]_ C = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C |
| 129 |
|
csbopeq1a |
|- ( a = <. i , j >. -> [_ ( 1st ` a ) / i ]_ [_ ( 2nd ` a ) / j ]_ [_ i / x ]_ [_ j / y ]_ C = [_ i / x ]_ [_ j / y ]_ C ) |
| 130 |
128 129
|
eqtr3id |
|- ( a = <. i , j >. -> [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C = [_ i / x ]_ [_ j / y ]_ C ) |
| 131 |
130
|
eqeq2d |
|- ( a = <. i , j >. -> ( z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C <-> z = [_ i / x ]_ [_ j / y ]_ C ) ) |
| 132 |
121 131
|
anbi12d |
|- ( a = <. i , j >. -> ( ( a e. ( A X. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) <-> ( ( i e. A /\ j e. B ) /\ z = [_ i / x ]_ [_ j / y ]_ C ) ) ) |
| 133 |
|
xpss |
|- ( A X. B ) C_ ( _V X. _V ) |
| 134 |
133
|
sseli |
|- ( a e. ( A X. B ) -> a e. ( _V X. _V ) ) |
| 135 |
134
|
adantr |
|- ( ( a e. ( A X. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) -> a e. ( _V X. _V ) ) |
| 136 |
132 135
|
cnvoprab |
|- `' { <. <. i , j >. , z >. | ( ( i e. A /\ j e. B ) /\ z = [_ i / x ]_ [_ j / y ]_ C ) } = { <. z , a >. | ( a e. ( A X. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) } |
| 137 |
94 118 136
|
3eqtri |
|- `' F = { <. z , a >. | ( a e. ( A X. B ) /\ z = [_ ( 1st ` a ) / x ]_ [_ ( 2nd ` a ) / y ]_ C ) } |
| 138 |
|
df-mpt |
|- ( z e. D |-> <. I , J >. ) = { <. z , a >. | ( z e. D /\ a = <. I , J >. ) } |
| 139 |
91 137 138
|
3eqtr4g |
|- ( ph -> `' F = ( z e. D |-> <. I , J >. ) ) |
| 140 |
139
|
fneq1d |
|- ( ph -> ( `' F Fn D <-> ( z e. D |-> <. I , J >. ) Fn D ) ) |
| 141 |
13 140
|
mpbird |
|- ( ph -> `' F Fn D ) |
| 142 |
|
dff1o4 |
|- ( F : ( A X. B ) -1-1-onto-> D <-> ( F Fn ( A X. B ) /\ `' F Fn D ) ) |
| 143 |
7 141 142
|
sylanbrc |
|- ( ph -> F : ( A X. B ) -1-1-onto-> D ) |