Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbceq2g | |- ( A e. V -> ( [. A / x ]. B = C <-> B = [_ A / x ]_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceqg | |- ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) |
|
| 2 | csbconstg | |- ( A e. V -> [_ A / x ]_ B = B ) |
|
| 3 | 2 | eqeq1d | |- ( A e. V -> ( [_ A / x ]_ B = [_ A / x ]_ C <-> B = [_ A / x ]_ C ) ) |
| 4 | 1 3 | bitrd | |- ( A e. V -> ( [. A / x ]. B = C <-> B = [_ A / x ]_ C ) ) |