Metamath Proof Explorer


Theorem csbconstg

Description: Substitution doesn't affect a constant B (in which x does not occur). csbconstgf with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012) Avoid ax-12 . (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Assertion csbconstg
|- ( A e. V -> [_ A / x ]_ B = B )

Proof

Step Hyp Ref Expression
1 csbeq1
 |-  ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B )
2 1 eqeq1d
 |-  ( y = A -> ( [_ y / x ]_ B = B <-> [_ A / x ]_ B = B ) )
3 df-csb
 |-  [_ y / x ]_ B = { z | [. y / x ]. z e. B }
4 sbcg
 |-  ( y e. _V -> ( [. y / x ]. z e. B <-> z e. B ) )
5 4 elv
 |-  ( [. y / x ]. z e. B <-> z e. B )
6 5 abbii
 |-  { z | [. y / x ]. z e. B } = { z | z e. B }
7 abid2
 |-  { z | z e. B } = B
8 3 6 7 3eqtri
 |-  [_ y / x ]_ B = B
9 2 8 vtoclg
 |-  ( A e. V -> [_ A / x ]_ B = B )