Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbceq2g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceqg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) | |
| 2 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐵 ) | |
| 3 | 2 | eqeq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 4 | 1 3 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |