Step |
Hyp |
Ref |
Expression |
1 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝐵 = 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ) ) |
2 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ) |
3 |
2
|
abbidv |
⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ) |
4 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) |
5 |
4
|
abbidv |
⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
6 |
3 5
|
eqeq12d |
⊢ ( 𝑧 = 𝐴 → ( { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
7 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 |
8 |
7
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } |
9 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 |
10 |
9
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } |
11 |
8 10
|
nfeq |
⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } |
12 |
|
sbab |
⊢ ( 𝑥 = 𝑧 → 𝐵 = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ) |
13 |
|
sbab |
⊢ ( 𝑥 = 𝑧 → 𝐶 = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝐵 = 𝐶 ↔ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
15 |
11 14
|
sbiev |
⊢ ( [ 𝑧 / 𝑥 ] 𝐵 = 𝐶 ↔ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
16 |
1 6 15
|
vtoclbg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
17 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } |
18 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } |
19 |
17 18
|
eqeq12i |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
20 |
16 19
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |