Metamath Proof Explorer


Theorem sbcbidv

Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014) Drop ax-12 . (Revised by Gino Giotto, 1-Dec-2023)

Ref Expression
Hypothesis sbcbidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion sbcbidv
|- ( ph -> ( [. A / x ]. ps <-> [. A / x ]. ch ) )

Proof

Step Hyp Ref Expression
1 sbcbidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 eqidd
 |-  ( ph -> A = A )
3 2 1 sbceqbid
 |-  ( ph -> ( [. A / x ]. ps <-> [. A / x ]. ch ) )