Metamath Proof Explorer


Theorem f1od2

Description: Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by Thierry Arnoux, 17-Aug-2017)

Ref Expression
Hypotheses f1od2.1 F=xA,yBC
f1od2.2 φxAyBCW
f1od2.3 φzDIXJY
f1od2.4 φxAyBz=CzDx=Iy=J
Assertion f1od2 φF:A×B1-1 ontoD

Proof

Step Hyp Ref Expression
1 f1od2.1 F=xA,yBC
2 f1od2.2 φxAyBCW
3 f1od2.3 φzDIXJY
4 f1od2.4 φxAyBz=CzDx=Iy=J
5 2 ralrimivva φxAyBCW
6 1 fnmpo xAyBCWFFnA×B
7 5 6 syl φFFnA×B
8 opelxpi IXJYIJX×Y
9 3 8 syl φzDIJX×Y
10 9 ralrimiva φzDIJX×Y
11 eqid zDIJ=zDIJ
12 11 fnmpt zDIJX×YzDIJFnD
13 10 12 syl φzDIJFnD
14 elxp7 aA×BaV×V1staA2ndaB
15 14 anbi1i aA×Bz=1sta/x2nda/yCaV×V1staA2ndaBz=1sta/x2nda/yC
16 anass aV×V1staA2ndaBz=1sta/x2nda/yCaV×V1staA2ndaBz=1sta/x2nda/yC
17 4 sbcbidv φ[˙2nda/y]˙xAyBz=C[˙2nda/y]˙zDx=Iy=J
18 17 sbcbidv φ[˙1sta/x]˙[˙2nda/y]˙xAyBz=C[˙1sta/x]˙[˙2nda/y]˙zDx=Iy=J
19 sbcan [˙2nda/y]˙xAyBz=C[˙2nda/y]˙xAyB[˙2nda/y]˙z=C
20 sbcan [˙2nda/y]˙xAyB[˙2nda/y]˙xA[˙2nda/y]˙yB
21 fvex 2ndaV
22 sbcg 2ndaV[˙2nda/y]˙xAxA
23 21 22 ax-mp [˙2nda/y]˙xAxA
24 sbcel1v [˙2nda/y]˙yB2ndaB
25 23 24 anbi12i [˙2nda/y]˙xA[˙2nda/y]˙yBxA2ndaB
26 20 25 bitri [˙2nda/y]˙xAyBxA2ndaB
27 sbceq2g 2ndaV[˙2nda/y]˙z=Cz=2nda/yC
28 21 27 ax-mp [˙2nda/y]˙z=Cz=2nda/yC
29 26 28 anbi12i [˙2nda/y]˙xAyB[˙2nda/y]˙z=CxA2ndaBz=2nda/yC
30 19 29 bitri [˙2nda/y]˙xAyBz=CxA2ndaBz=2nda/yC
31 30 sbcbii [˙1sta/x]˙[˙2nda/y]˙xAyBz=C[˙1sta/x]˙xA2ndaBz=2nda/yC
32 sbcan [˙1sta/x]˙xA2ndaBz=2nda/yC[˙1sta/x]˙xA2ndaB[˙1sta/x]˙z=2nda/yC
33 sbcan [˙1sta/x]˙xA2ndaB[˙1sta/x]˙xA[˙1sta/x]˙2ndaB
34 sbcel1v [˙1sta/x]˙xA1staA
35 fvex 1staV
36 sbcg 1staV[˙1sta/x]˙2ndaB2ndaB
37 35 36 ax-mp [˙1sta/x]˙2ndaB2ndaB
38 34 37 anbi12i [˙1sta/x]˙xA[˙1sta/x]˙2ndaB1staA2ndaB
39 33 38 bitri [˙1sta/x]˙xA2ndaB1staA2ndaB
40 sbceq2g 1staV[˙1sta/x]˙z=2nda/yCz=1sta/x2nda/yC
41 35 40 ax-mp [˙1sta/x]˙z=2nda/yCz=1sta/x2nda/yC
42 39 41 anbi12i [˙1sta/x]˙xA2ndaB[˙1sta/x]˙z=2nda/yC1staA2ndaBz=1sta/x2nda/yC
43 31 32 42 3bitri [˙1sta/x]˙[˙2nda/y]˙xAyBz=C1staA2ndaBz=1sta/x2nda/yC
44 sbcan [˙2nda/y]˙zDx=Iy=J[˙2nda/y]˙zD[˙2nda/y]˙x=Iy=J
45 sbcg 2ndaV[˙2nda/y]˙zDzD
46 21 45 ax-mp [˙2nda/y]˙zDzD
47 sbcan [˙2nda/y]˙x=Iy=J[˙2nda/y]˙x=I[˙2nda/y]˙y=J
48 sbcg 2ndaV[˙2nda/y]˙x=Ix=I
49 21 48 ax-mp [˙2nda/y]˙x=Ix=I
50 sbceq1g 2ndaV[˙2nda/y]˙y=J2nda/yy=J
51 21 50 ax-mp [˙2nda/y]˙y=J2nda/yy=J
52 21 csbvargi 2nda/yy=2nda
53 52 eqeq1i 2nda/yy=J2nda=J
54 51 53 bitri [˙2nda/y]˙y=J2nda=J
55 49 54 anbi12i [˙2nda/y]˙x=I[˙2nda/y]˙y=Jx=I2nda=J
56 47 55 bitri [˙2nda/y]˙x=Iy=Jx=I2nda=J
57 46 56 anbi12i [˙2nda/y]˙zD[˙2nda/y]˙x=Iy=JzDx=I2nda=J
58 44 57 bitri [˙2nda/y]˙zDx=Iy=JzDx=I2nda=J
59 58 sbcbii [˙1sta/x]˙[˙2nda/y]˙zDx=Iy=J[˙1sta/x]˙zDx=I2nda=J
60 sbcan [˙1sta/x]˙zDx=I2nda=J[˙1sta/x]˙zD[˙1sta/x]˙x=I2nda=J
61 sbcg 1staV[˙1sta/x]˙zDzD
62 35 61 ax-mp [˙1sta/x]˙zDzD
63 sbcan [˙1sta/x]˙x=I2nda=J[˙1sta/x]˙x=I[˙1sta/x]˙2nda=J
64 sbceq1g 1staV[˙1sta/x]˙x=I1sta/xx=I
65 35 64 ax-mp [˙1sta/x]˙x=I1sta/xx=I
66 35 csbvargi 1sta/xx=1sta
67 66 eqeq1i 1sta/xx=I1sta=I
68 65 67 bitri [˙1sta/x]˙x=I1sta=I
69 sbcg 1staV[˙1sta/x]˙2nda=J2nda=J
70 35 69 ax-mp [˙1sta/x]˙2nda=J2nda=J
71 68 70 anbi12i [˙1sta/x]˙x=I[˙1sta/x]˙2nda=J1sta=I2nda=J
72 63 71 bitri [˙1sta/x]˙x=I2nda=J1sta=I2nda=J
73 62 72 anbi12i [˙1sta/x]˙zD[˙1sta/x]˙x=I2nda=JzD1sta=I2nda=J
74 59 60 73 3bitri [˙1sta/x]˙[˙2nda/y]˙zDx=Iy=JzD1sta=I2nda=J
75 18 43 74 3bitr3g φ1staA2ndaBz=1sta/x2nda/yCzD1sta=I2nda=J
76 75 anbi2d φaV×V1staA2ndaBz=1sta/x2nda/yCaV×VzD1sta=I2nda=J
77 16 76 syl5bb φaV×V1staA2ndaBz=1sta/x2nda/yCaV×VzD1sta=I2nda=J
78 xpss X×YV×V
79 simprr φzDa=IJa=IJ
80 9 adantrr φzDa=IJIJX×Y
81 79 80 eqeltrd φzDa=IJaX×Y
82 78 81 sselid φzDa=IJaV×V
83 82 ex φzDa=IJaV×V
84 83 pm4.71rd φzDa=IJaV×VzDa=IJ
85 eqop aV×Va=IJ1sta=I2nda=J
86 85 anbi2d aV×VzDa=IJzD1sta=I2nda=J
87 86 pm5.32i aV×VzDa=IJaV×VzD1sta=I2nda=J
88 84 87 bitr2di φaV×VzD1sta=I2nda=JzDa=IJ
89 77 88 bitrd φaV×V1staA2ndaBz=1sta/x2nda/yCzDa=IJ
90 15 89 syl5bb φaA×Bz=1sta/x2nda/yCzDa=IJ
91 90 opabbidv φza|aA×Bz=1sta/x2nda/yC=za|zDa=IJ
92 df-mpo xA,yBC=xyz|xAyBz=C
93 1 92 eqtri F=xyz|xAyBz=C
94 93 cnveqi F-1=xyz|xAyBz=C-1
95 nfv ixAyBz=C
96 nfv jxAyBz=C
97 nfv xiAjB
98 nfcsb1v _xi/xj/yC
99 98 nfeq2 xz=i/xj/yC
100 97 99 nfan xiAjBz=i/xj/yC
101 nfv yiAjB
102 nfcv _yi
103 nfcsb1v _yj/yC
104 102 103 nfcsbw _yi/xj/yC
105 104 nfeq2 yz=i/xj/yC
106 101 105 nfan yiAjBz=i/xj/yC
107 simpl x=iy=jx=i
108 107 eleq1d x=iy=jxAiA
109 simpr x=iy=jy=j
110 109 eleq1d x=iy=jyBjB
111 108 110 anbi12d x=iy=jxAyBiAjB
112 csbeq1a y=jC=j/yC
113 csbeq1a x=ij/yC=i/xj/yC
114 112 113 sylan9eqr x=iy=jC=i/xj/yC
115 114 eqeq2d x=iy=jz=Cz=i/xj/yC
116 111 115 anbi12d x=iy=jxAyBz=CiAjBz=i/xj/yC
117 95 96 100 106 116 cbvoprab12 xyz|xAyBz=C=ijz|iAjBz=i/xj/yC
118 117 cnveqi xyz|xAyBz=C-1=ijz|iAjBz=i/xj/yC-1
119 eleq1 a=ijaA×BijA×B
120 opelxp ijA×BiAjB
121 119 120 bitrdi a=ijaA×BiAjB
122 csbcom 2nda/ji/xj/yC=i/x2nda/jj/yC
123 csbcow 2nda/jj/yC=2nda/yC
124 123 csbeq2i i/x2nda/jj/yC=i/x2nda/yC
125 122 124 eqtri 2nda/ji/xj/yC=i/x2nda/yC
126 125 csbeq2i 1sta/i2nda/ji/xj/yC=1sta/ii/x2nda/yC
127 csbcow 1sta/ii/x2nda/yC=1sta/x2nda/yC
128 126 127 eqtri 1sta/i2nda/ji/xj/yC=1sta/x2nda/yC
129 csbopeq1a a=ij1sta/i2nda/ji/xj/yC=i/xj/yC
130 128 129 eqtr3id a=ij1sta/x2nda/yC=i/xj/yC
131 130 eqeq2d a=ijz=1sta/x2nda/yCz=i/xj/yC
132 121 131 anbi12d a=ijaA×Bz=1sta/x2nda/yCiAjBz=i/xj/yC
133 xpss A×BV×V
134 133 sseli aA×BaV×V
135 134 adantr aA×Bz=1sta/x2nda/yCaV×V
136 132 135 cnvoprab ijz|iAjBz=i/xj/yC-1=za|aA×Bz=1sta/x2nda/yC
137 94 118 136 3eqtri F-1=za|aA×Bz=1sta/x2nda/yC
138 df-mpt zDIJ=za|zDa=IJ
139 91 137 138 3eqtr4g φF-1=zDIJ
140 139 fneq1d φF-1FnDzDIJFnD
141 13 140 mpbird φF-1FnD
142 dff1o4 F:A×B1-1 ontoDFFnA×BF-1FnD
143 7 141 142 sylanbrc φF:A×B1-1 ontoD