Metamath Proof Explorer


Theorem csbcom

Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion csbcom A/xB/yC=B/yA/xC

Proof

Step Hyp Ref Expression
1 sbccom [˙A/x]˙[˙B/y]˙zC[˙B/y]˙[˙A/x]˙zC
2 sbcel2 [˙B/y]˙zCzB/yC
3 2 sbcbii [˙A/x]˙[˙B/y]˙zC[˙A/x]˙zB/yC
4 sbcel2 [˙A/x]˙zCzA/xC
5 4 sbcbii [˙B/y]˙[˙A/x]˙zC[˙B/y]˙zA/xC
6 1 3 5 3bitr3i [˙A/x]˙zB/yC[˙B/y]˙zA/xC
7 sbcel2 [˙A/x]˙zB/yCzA/xB/yC
8 sbcel2 [˙B/y]˙zA/xCzB/yA/xC
9 6 7 8 3bitr3i zA/xB/yCzB/yA/xC
10 9 eqriv A/xB/yC=B/yA/xC