Metamath Proof Explorer


Theorem sbccom

Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005) (Proof shortened by Mario Carneiro, 18-Oct-2016)

Ref Expression
Assertion sbccom [˙A/x]˙[˙B/y]˙φ[˙B/y]˙[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 sbccomlem [˙A/z]˙[˙B/w]˙[˙w/y]˙[˙z/x]˙φ[˙B/w]˙[˙A/z]˙[˙w/y]˙[˙z/x]˙φ
2 sbccomlem [˙w/y]˙[˙z/x]˙φ[˙z/x]˙[˙w/y]˙φ
3 2 sbcbii [˙B/w]˙[˙w/y]˙[˙z/x]˙φ[˙B/w]˙[˙z/x]˙[˙w/y]˙φ
4 sbccomlem [˙B/w]˙[˙z/x]˙[˙w/y]˙φ[˙z/x]˙[˙B/w]˙[˙w/y]˙φ
5 3 4 bitri [˙B/w]˙[˙w/y]˙[˙z/x]˙φ[˙z/x]˙[˙B/w]˙[˙w/y]˙φ
6 5 sbcbii [˙A/z]˙[˙B/w]˙[˙w/y]˙[˙z/x]˙φ[˙A/z]˙[˙z/x]˙[˙B/w]˙[˙w/y]˙φ
7 sbccomlem [˙A/z]˙[˙w/y]˙[˙z/x]˙φ[˙w/y]˙[˙A/z]˙[˙z/x]˙φ
8 7 sbcbii [˙B/w]˙[˙A/z]˙[˙w/y]˙[˙z/x]˙φ[˙B/w]˙[˙w/y]˙[˙A/z]˙[˙z/x]˙φ
9 1 6 8 3bitr3i [˙A/z]˙[˙z/x]˙[˙B/w]˙[˙w/y]˙φ[˙B/w]˙[˙w/y]˙[˙A/z]˙[˙z/x]˙φ
10 sbccow [˙A/z]˙[˙z/x]˙[˙B/w]˙[˙w/y]˙φ[˙A/x]˙[˙B/w]˙[˙w/y]˙φ
11 sbccow [˙B/w]˙[˙w/y]˙[˙A/z]˙[˙z/x]˙φ[˙B/y]˙[˙A/z]˙[˙z/x]˙φ
12 9 10 11 3bitr3i [˙A/x]˙[˙B/w]˙[˙w/y]˙φ[˙B/y]˙[˙A/z]˙[˙z/x]˙φ
13 sbccow [˙B/w]˙[˙w/y]˙φ[˙B/y]˙φ
14 13 sbcbii [˙A/x]˙[˙B/w]˙[˙w/y]˙φ[˙A/x]˙[˙B/y]˙φ
15 sbccow [˙A/z]˙[˙z/x]˙φ[˙A/x]˙φ
16 15 sbcbii [˙B/y]˙[˙A/z]˙[˙z/x]˙φ[˙B/y]˙[˙A/x]˙φ
17 12 14 16 3bitr3i [˙A/x]˙[˙B/y]˙φ[˙B/y]˙[˙A/x]˙φ