Metamath Proof Explorer


Theorem sbcralt

Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008) (Revised by David Abernethy, 22-Feb-2010)

Ref Expression
Assertion sbcralt AV_yA[˙A/x]˙yBφyB[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 sbccow [˙A/z]˙[˙z/x]˙yBφ[˙A/x]˙yBφ
2 simpl AV_yAAV
3 sbsbc zxyBφ[˙z/x]˙yBφ
4 nfcv _xB
5 nfs1v xzxφ
6 4 5 nfralw xyBzxφ
7 sbequ12 x=zφzxφ
8 7 ralbidv x=zyBφyBzxφ
9 6 8 sbiev zxyBφyBzxφ
10 3 9 bitr3i [˙z/x]˙yBφyBzxφ
11 nfnfc1 y_yA
12 nfcvd _yA_yz
13 id _yA_yA
14 12 13 nfeqd _yAyz=A
15 11 14 nfan1 y_yAz=A
16 dfsbcq2 z=Azxφ[˙A/x]˙φ
17 16 adantl _yAz=Azxφ[˙A/x]˙φ
18 15 17 ralbid _yAz=AyBzxφyB[˙A/x]˙φ
19 18 adantll AV_yAz=AyBzxφyB[˙A/x]˙φ
20 10 19 bitrid AV_yAz=A[˙z/x]˙yBφyB[˙A/x]˙φ
21 2 20 sbcied AV_yA[˙A/z]˙[˙z/x]˙yBφyB[˙A/x]˙φ
22 1 21 bitr3id AV_yA[˙A/x]˙yBφyB[˙A/x]˙φ