| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sbccow | 
							 |-  ( [. A / z ]. [. z / x ]. A. y e. B ph <-> [. A / x ]. A. y e. B ph )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl | 
							 |-  ( ( A e. V /\ F/_ y A ) -> A e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							sbsbc | 
							 |-  ( [ z / x ] A. y e. B ph <-> [. z / x ]. A. y e. B ph )  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x B  | 
						
						
							| 5 | 
							
								
							 | 
							nfs1v | 
							 |-  F/ x [ z / x ] ph  | 
						
						
							| 6 | 
							
								4 5
							 | 
							nfralw | 
							 |-  F/ x A. y e. B [ z / x ] ph  | 
						
						
							| 7 | 
							
								
							 | 
							sbequ12 | 
							 |-  ( x = z -> ( ph <-> [ z / x ] ph ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ralbidv | 
							 |-  ( x = z -> ( A. y e. B ph <-> A. y e. B [ z / x ] ph ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							sbiev | 
							 |-  ( [ z / x ] A. y e. B ph <-> A. y e. B [ z / x ] ph )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							bitr3i | 
							 |-  ( [. z / x ]. A. y e. B ph <-> A. y e. B [ z / x ] ph )  | 
						
						
							| 11 | 
							
								
							 | 
							nfnfc1 | 
							 |-  F/ y F/_ y A  | 
						
						
							| 12 | 
							
								
							 | 
							nfcvd | 
							 |-  ( F/_ y A -> F/_ y z )  | 
						
						
							| 13 | 
							
								
							 | 
							id | 
							 |-  ( F/_ y A -> F/_ y A )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							nfeqd | 
							 |-  ( F/_ y A -> F/ y z = A )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							nfan1 | 
							 |-  F/ y ( F/_ y A /\ z = A )  | 
						
						
							| 16 | 
							
								
							 | 
							dfsbcq2 | 
							 |-  ( z = A -> ( [ z / x ] ph <-> [. A / x ]. ph ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( F/_ y A /\ z = A ) -> ( [ z / x ] ph <-> [. A / x ]. ph ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							ralbid | 
							 |-  ( ( F/_ y A /\ z = A ) -> ( A. y e. B [ z / x ] ph <-> A. y e. B [. A / x ]. ph ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantll | 
							 |-  ( ( ( A e. V /\ F/_ y A ) /\ z = A ) -> ( A. y e. B [ z / x ] ph <-> A. y e. B [. A / x ]. ph ) )  | 
						
						
							| 20 | 
							
								10 19
							 | 
							bitrid | 
							 |-  ( ( ( A e. V /\ F/_ y A ) /\ z = A ) -> ( [. z / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) )  | 
						
						
							| 21 | 
							
								2 20
							 | 
							sbcied | 
							 |-  ( ( A e. V /\ F/_ y A ) -> ( [. A / z ]. [. z / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) )  | 
						
						
							| 22 | 
							
								1 21
							 | 
							bitr3id | 
							 |-  ( ( A e. V /\ F/_ y A ) -> ( [. A / x ]. A. y e. B ph <-> A. y e. B [. A / x ]. ph ) )  |