Metamath Proof Explorer


Theorem sbcralt

Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008) (Revised by David Abernethy, 22-Feb-2010)

Ref Expression
Assertion sbcralt ( ( 𝐴𝑉 𝑦 𝐴 ) → ( [ 𝐴 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 sbccow ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ]𝑦𝐵 𝜑[ 𝐴 / 𝑥 ]𝑦𝐵 𝜑 )
2 simpl ( ( 𝐴𝑉 𝑦 𝐴 ) → 𝐴𝑉 )
3 sbsbc ( [ 𝑧 / 𝑥 ] ∀ 𝑦𝐵 𝜑[ 𝑧 / 𝑥 ]𝑦𝐵 𝜑 )
4 nfcv 𝑥 𝐵
5 nfs1v 𝑥 [ 𝑧 / 𝑥 ] 𝜑
6 4 5 nfralw 𝑥𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑
7 sbequ12 ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) )
8 7 ralbidv ( 𝑥 = 𝑧 → ( ∀ 𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) )
9 6 8 sbiev ( [ 𝑧 / 𝑥 ] ∀ 𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑 )
10 3 9 bitr3i ( [ 𝑧 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑 )
11 nfnfc1 𝑦 𝑦 𝐴
12 nfcvd ( 𝑦 𝐴 𝑦 𝑧 )
13 id ( 𝑦 𝐴 𝑦 𝐴 )
14 12 13 nfeqd ( 𝑦 𝐴 → Ⅎ 𝑦 𝑧 = 𝐴 )
15 11 14 nfan1 𝑦 ( 𝑦 𝐴𝑧 = 𝐴 )
16 dfsbcq2 ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
17 16 adantl ( ( 𝑦 𝐴𝑧 = 𝐴 ) → ( [ 𝑧 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
18 15 17 ralbid ( ( 𝑦 𝐴𝑧 = 𝐴 ) → ( ∀ 𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )
19 18 adantll ( ( ( 𝐴𝑉 𝑦 𝐴 ) ∧ 𝑧 = 𝐴 ) → ( ∀ 𝑦𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )
20 10 19 bitrid ( ( ( 𝐴𝑉 𝑦 𝐴 ) ∧ 𝑧 = 𝐴 ) → ( [ 𝑧 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )
21 2 20 sbcied ( ( 𝐴𝑉 𝑦 𝐴 ) → ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )
22 1 21 bitr3id ( ( 𝐴𝑉 𝑦 𝐴 ) → ( [ 𝐴 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )