Step |
Hyp |
Ref |
Expression |
1 |
|
sbccow |
⊢ ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ) |
2 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) → 𝐴 ∈ 𝑉 ) |
3 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
5 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
6 |
4 5
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 |
7 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
9 |
6 8
|
sbiev |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
10 |
3 9
|
bitr3i |
⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
11 |
|
nfnfc1 |
⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝐴 |
12 |
|
nfcvd |
⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝑧 ) |
13 |
|
id |
⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝐴 ) |
14 |
12 13
|
nfeqd |
⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝑧 = 𝐴 ) |
15 |
11 14
|
nfan1 |
⊢ Ⅎ 𝑦 ( Ⅎ 𝑦 𝐴 ∧ 𝑧 = 𝐴 ) |
16 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
17 |
16
|
adantl |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝑧 = 𝐴 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
18 |
15 17
|
ralbid |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝑧 = 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
19 |
18
|
adantll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) ∧ 𝑧 = 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
20 |
10 19
|
bitrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) ∧ 𝑧 = 𝐴 ) → ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
21 |
2 20
|
sbcied |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) → ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
22 |
1 21
|
bitr3id |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |