Metamath Proof Explorer


Theorem sbcel1v

Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018) Avoid ax-13 . (Revised by Wolf Lammen, 30-Apr-2023)

Ref Expression
Assertion sbcel1v [˙A/x]˙xBAB

Proof

Step Hyp Ref Expression
1 sbcex [˙A/x]˙xBAV
2 elex ABAV
3 dfsbcq2 y=AyxxB[˙A/x]˙xB
4 eleq1 y=AyBAB
5 clelsb1 yxxByB
6 3 4 5 vtoclbg AV[˙A/x]˙xBAB
7 1 2 6 pm5.21nii [˙A/x]˙xBAB