Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
|- Rel `' { <. x , y >. | ph } |
2 |
|
relopabv |
|- Rel { <. y , x >. | ph } |
3 |
|
vopelopabsb |
|- ( <. w , z >. e. { <. x , y >. | ph } <-> [ w / x ] [ z / y ] ph ) |
4 |
|
sbcom2 |
|- ( [ w / x ] [ z / y ] ph <-> [ z / y ] [ w / x ] ph ) |
5 |
3 4
|
bitri |
|- ( <. w , z >. e. { <. x , y >. | ph } <-> [ z / y ] [ w / x ] ph ) |
6 |
|
vex |
|- z e. _V |
7 |
|
vex |
|- w e. _V |
8 |
6 7
|
opelcnv |
|- ( <. z , w >. e. `' { <. x , y >. | ph } <-> <. w , z >. e. { <. x , y >. | ph } ) |
9 |
|
vopelopabsb |
|- ( <. z , w >. e. { <. y , x >. | ph } <-> [ z / y ] [ w / x ] ph ) |
10 |
5 8 9
|
3bitr4i |
|- ( <. z , w >. e. `' { <. x , y >. | ph } <-> <. z , w >. e. { <. y , x >. | ph } ) |
11 |
1 2 10
|
eqrelriiv |
|- `' { <. x , y >. | ph } = { <. y , x >. | ph } |