| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqcom | 
							 |-  ( <. z , w >. = <. x , y >. <-> <. x , y >. = <. z , w >. )  | 
						
						
							| 2 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 3 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 4 | 
							
								2 3
							 | 
							opth | 
							 |-  ( <. x , y >. = <. z , w >. <-> ( x = z /\ y = w ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							bitri | 
							 |-  ( <. z , w >. = <. x , y >. <-> ( x = z /\ y = w ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							anbi1i | 
							 |-  ( ( <. z , w >. = <. x , y >. /\ ph ) <-> ( ( x = z /\ y = w ) /\ ph ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							2exbii | 
							 |-  ( E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) <-> E. x E. y ( ( x = z /\ y = w ) /\ ph ) )  | 
						
						
							| 8 | 
							
								
							 | 
							elopab | 
							 |-  ( <. z , w >. e. { <. x , y >. | ph } <-> E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) ) | 
						
						
							| 9 | 
							
								
							 | 
							2sb5 | 
							 |-  ( [ z / x ] [ w / y ] ph <-> E. x E. y ( ( x = z /\ y = w ) /\ ph ) )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							3bitr4i | 
							 |-  ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph ) |