Step |
Hyp |
Ref |
Expression |
1 |
|
2sb6 |
|- ( [ v / z ] [ u / x ] ph <-> A. z A. x ( ( z = v /\ x = u ) -> ph ) ) |
2 |
|
alcom |
|- ( A. z A. x ( ( z = v /\ x = u ) -> ph ) <-> A. x A. z ( ( z = v /\ x = u ) -> ph ) ) |
3 |
|
ancomst |
|- ( ( ( z = v /\ x = u ) -> ph ) <-> ( ( x = u /\ z = v ) -> ph ) ) |
4 |
3
|
2albii |
|- ( A. x A. z ( ( z = v /\ x = u ) -> ph ) <-> A. x A. z ( ( x = u /\ z = v ) -> ph ) ) |
5 |
1 2 4
|
3bitri |
|- ( [ v / z ] [ u / x ] ph <-> A. x A. z ( ( x = u /\ z = v ) -> ph ) ) |
6 |
|
2sb6 |
|- ( [ u / x ] [ v / z ] ph <-> A. x A. z ( ( x = u /\ z = v ) -> ph ) ) |
7 |
5 6
|
bitr4i |
|- ( [ v / z ] [ u / x ] ph <-> [ u / x ] [ v / z ] ph ) |
8 |
|
sbequ |
|- ( u = y -> ( [ u / x ] ph <-> [ y / x ] ph ) ) |
9 |
8
|
sbbidv |
|- ( u = y -> ( [ v / z ] [ u / x ] ph <-> [ v / z ] [ y / x ] ph ) ) |
10 |
7 9
|
bitr3id |
|- ( u = y -> ( [ u / x ] [ v / z ] ph <-> [ v / z ] [ y / x ] ph ) ) |
11 |
|
sbequ |
|- ( v = w -> ( [ v / z ] [ y / x ] ph <-> [ w / z ] [ y / x ] ph ) ) |
12 |
10 11
|
sylan9bb |
|- ( ( u = y /\ v = w ) -> ( [ u / x ] [ v / z ] ph <-> [ w / z ] [ y / x ] ph ) ) |
13 |
|
sbequ |
|- ( v = w -> ( [ v / z ] ph <-> [ w / z ] ph ) ) |
14 |
13
|
sbbidv |
|- ( v = w -> ( [ u / x ] [ v / z ] ph <-> [ u / x ] [ w / z ] ph ) ) |
15 |
|
sbequ |
|- ( u = y -> ( [ u / x ] [ w / z ] ph <-> [ y / x ] [ w / z ] ph ) ) |
16 |
14 15
|
sylan9bbr |
|- ( ( u = y /\ v = w ) -> ( [ u / x ] [ v / z ] ph <-> [ y / x ] [ w / z ] ph ) ) |
17 |
12 16
|
bitr3d |
|- ( ( u = y /\ v = w ) -> ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) ) |
18 |
17
|
ex |
|- ( u = y -> ( v = w -> ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) ) ) |
19 |
|
ax6ev |
|- E. u u = y |
20 |
18 19
|
exlimiiv |
|- ( v = w -> ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) ) |
21 |
|
ax6ev |
|- E. v v = w |
22 |
20 21
|
exlimiiv |
|- ( [ w / z ] [ y / x ] ph <-> [ y / x ] [ w / z ] ph ) |