Metamath Proof Explorer
		
		
		
		Description:  Inference (Rule C) associated with exlimiv .  (Contributed by BJ, 19-Dec-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | exlimiv.1 | |- ( ph -> ps ) | 
					
						|  |  | exlimiiv.2 | |- E. x ph | 
				
					|  | Assertion | exlimiiv | |- ps | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exlimiv.1 |  |-  ( ph -> ps ) | 
						
							| 2 |  | exlimiiv.2 |  |-  E. x ph | 
						
							| 3 | 1 | exlimiv |  |-  ( E. x ph -> ps ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ps |