Metamath Proof Explorer


Theorem exlimiiv

Description: Inference (Rule C) associated with exlimiv . (Contributed by BJ, 19-Dec-2020)

Ref Expression
Hypotheses exlimiv.1
|- ( ph -> ps )
exlimiiv.2
|- E. x ph
Assertion exlimiiv
|- ps

Proof

Step Hyp Ref Expression
1 exlimiv.1
 |-  ( ph -> ps )
2 exlimiiv.2
 |-  E. x ph
3 1 exlimiv
 |-  ( E. x ph -> ps )
4 2 3 ax-mp
 |-  ps