Metamath Proof Explorer
		
		
		
		Description:  Inference (Rule C) associated with exlimiv .  (Contributed by BJ, 19-Dec-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | exlimiv.1 |  | 
					
						|  |  | exlimiiv.2 |  | 
				
					|  | Assertion | exlimiiv |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exlimiv.1 |  | 
						
							| 2 |  | exlimiiv.2 |  | 
						
							| 3 | 1 | exlimiv |  | 
						
							| 4 | 2 3 | ax-mp |  |