Metamath Proof Explorer


Theorem sbcom2

Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of Megill p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997) (Proof shortened by Wolf Lammen, 23-Dec-2022)

Ref Expression
Assertion sbcom2 wzyxφyxwzφ

Proof

Step Hyp Ref Expression
1 2sb6 vzuxφzxz=vx=uφ
2 alcom zxz=vx=uφxzz=vx=uφ
3 ancomst z=vx=uφx=uz=vφ
4 3 2albii xzz=vx=uφxzx=uz=vφ
5 1 2 4 3bitri vzuxφxzx=uz=vφ
6 2sb6 uxvzφxzx=uz=vφ
7 5 6 bitr4i vzuxφuxvzφ
8 sbequ u=yuxφyxφ
9 8 sbbidv u=yvzuxφvzyxφ
10 7 9 bitr3id u=yuxvzφvzyxφ
11 sbequ v=wvzyxφwzyxφ
12 10 11 sylan9bb u=yv=wuxvzφwzyxφ
13 sbequ v=wvzφwzφ
14 13 sbbidv v=wuxvzφuxwzφ
15 sbequ u=yuxwzφyxwzφ
16 14 15 sylan9bbr u=yv=wuxvzφyxwzφ
17 12 16 bitr3d u=yv=wwzyxφyxwzφ
18 17 ex u=yv=wwzyxφyxwzφ
19 ax6ev uu=y
20 18 19 exlimiiv v=wwzyxφyxwzφ
21 ax6ev vv=w
22 20 21 exlimiiv wzyxφyxwzφ