Metamath Proof Explorer


Theorem 2sb6

Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005)

Ref Expression
Assertion 2sb6 zxwyφxyx=zy=wφ

Proof

Step Hyp Ref Expression
1 sb6 zxwyφxx=zwyφ
2 19.21v yx=zy=wφx=zyy=wφ
3 impexp x=zy=wφx=zy=wφ
4 3 albii yx=zy=wφyx=zy=wφ
5 sb6 wyφyy=wφ
6 5 imbi2i x=zwyφx=zyy=wφ
7 2 4 6 3bitr4ri x=zwyφyx=zy=wφ
8 7 albii xx=zwyφxyx=zy=wφ
9 1 8 bitri zxwyφxyx=zy=wφ