Metamath Proof Explorer


Definition df-oprab

Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of TakeutiZaring p. 14. Normally x , y , and z are distinct, although the definition doesn't strictly require it. See df-ov for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo . (Contributed by NM, 12-Mar-1995)

Ref Expression
Assertion df-oprab
|- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 vy
 |-  y
2 vz
 |-  z
3 wph
 |-  ph
4 3 0 1 2 coprab
 |-  { <. <. x , y >. , z >. | ph }
5 vw
 |-  w
6 5 cv
 |-  w
7 0 cv
 |-  x
8 1 cv
 |-  y
9 7 8 cop
 |-  <. x , y >.
10 2 cv
 |-  z
11 9 10 cop
 |-  <. <. x , y >. , z >.
12 6 11 wceq
 |-  w = <. <. x , y >. , z >.
13 12 3 wa
 |-  ( w = <. <. x , y >. , z >. /\ ph )
14 13 2 wex
 |-  E. z ( w = <. <. x , y >. , z >. /\ ph )
15 14 1 wex
 |-  E. y E. z ( w = <. <. x , y >. , z >. /\ ph )
16 15 0 wex
 |-  E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph )
17 16 5 cab
 |-  { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) }
18 4 17 wceq
 |-  { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) }