Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of TakeutiZaring p. 14. Normally x , y , and z are distinct, although the definition doesn't strictly require it. See df-ov for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo . (Contributed by NM, 12-Mar-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | df-oprab | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ 𝜑 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | ⊢ 𝑥 | |
1 | vy | ⊢ 𝑦 | |
2 | vz | ⊢ 𝑧 | |
3 | wph | ⊢ 𝜑 | |
4 | 3 0 1 2 | coprab | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } |
5 | vw | ⊢ 𝑤 | |
6 | 5 | cv | ⊢ 𝑤 |
7 | 0 | cv | ⊢ 𝑥 |
8 | 1 | cv | ⊢ 𝑦 |
9 | 7 8 | cop | ⊢ 〈 𝑥 , 𝑦 〉 |
10 | 2 | cv | ⊢ 𝑧 |
11 | 9 10 | cop | ⊢ 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 |
12 | 6 11 | wceq | ⊢ 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 |
13 | 12 3 | wa | ⊢ ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ 𝜑 ) |
14 | 13 2 | wex | ⊢ ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ 𝜑 ) |
15 | 14 1 | wex | ⊢ ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ 𝜑 ) |
16 | 15 0 | wex | ⊢ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ 𝜑 ) |
17 | 16 5 | cab | ⊢ { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ 𝜑 ) } |
18 | 4 17 | wceq | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ 𝜑 ) } |