Metamath Proof Explorer


Theorem abrexct

Description: An image set of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion abrexct
|- ( A ~<_ _om -> { y | E. x e. A y = B } ~<_ _om )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
2 1 rnmpt
 |-  ran ( x e. A |-> B ) = { y | E. x e. A y = B }
3 1stcrestlem
 |-  ( A ~<_ _om -> ran ( x e. A |-> B ) ~<_ _om )
4 2 3 eqbrtrrid
 |-  ( A ~<_ _om -> { y | E. x e. A y = B } ~<_ _om )