Description: An image set of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | abrexct | |- ( A ~<_ _om -> { y | E. x e. A y = B } ~<_ _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
2 | 1 | rnmpt | |- ran ( x e. A |-> B ) = { y | E. x e. A y = B } |
3 | 1stcrestlem | |- ( A ~<_ _om -> ran ( x e. A |-> B ) ~<_ _om ) |
|
4 | 2 3 | eqbrtrrid | |- ( A ~<_ _om -> { y | E. x e. A y = B } ~<_ _om ) |