Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Subclasses and subsets dfss3f  
				
		 
		
			
		 
		Description:   Equivalence for subclass relation, using bound-variable hypotheses
       instead of distinct variable conditions.  (Contributed by NM , 20-Mar-2004) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						dfssf.1 ⊢  Ⅎ  𝑥  𝐴   
					
						dfssf.2 ⊢  Ⅎ  𝑥  𝐵   
				
					Assertion 
					dfss3f ⊢   ( 𝐴   ⊆  𝐵   ↔  ∀ 𝑥   ∈  𝐴  𝑥   ∈  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							dfssf.1 ⊢  Ⅎ  𝑥  𝐴   
						
							2 
								
							 
							dfssf.2 ⊢  Ⅎ  𝑥  𝐵   
						
							3 
								1  2 
							 
							dfssf ⊢  ( 𝐴   ⊆  𝐵   ↔  ∀ 𝑥  ( 𝑥   ∈  𝐴   →  𝑥   ∈  𝐵  ) )  
						
							4 
								
							 
							df-ral ⊢  ( ∀ 𝑥   ∈  𝐴  𝑥   ∈  𝐵   ↔  ∀ 𝑥  ( 𝑥   ∈  𝐴   →  𝑥   ∈  𝐵  ) )  
						
							5 
								3  4 
							 
							bitr4i ⊢  ( 𝐴   ⊆  𝐵   ↔  ∀ 𝑥   ∈  𝐴  𝑥   ∈  𝐵  )