Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Subclasses and subsets dfssf  
				
		 
		
			
		 
		Description:   Equivalence for subclass relation, using bound-variable hypotheses
       instead of distinct variable conditions.  (Contributed by NM , 3-Jul-1994)   (Revised by Andrew Salmon , 27-Aug-2011)   Avoid ax-13  .
       (Revised by GG , 19-May-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						dfssf.1 ⊢  Ⅎ  𝑥  𝐴   
					
						dfssf.2 ⊢  Ⅎ  𝑥  𝐵   
				
					Assertion 
					dfssf ⊢   ( 𝐴   ⊆  𝐵   ↔  ∀ 𝑥  ( 𝑥   ∈  𝐴   →  𝑥   ∈  𝐵  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							dfssf.1 ⊢  Ⅎ  𝑥  𝐴   
						
							2 
								
							 
							dfssf.2 ⊢  Ⅎ  𝑥  𝐵   
						
							3 
								
							 
							df-ss ⊢  ( 𝐴   ⊆  𝐵   ↔  ∀ 𝑧  ( 𝑧   ∈  𝐴   →  𝑧   ∈  𝐵  ) )  
						
							4 
								1 
							 
							nfcri ⊢  Ⅎ 𝑥  𝑧   ∈  𝐴   
						
							5 
								2 
							 
							nfcri ⊢  Ⅎ 𝑥  𝑧   ∈  𝐵   
						
							6 
								4  5 
							 
							nfim ⊢  Ⅎ 𝑥  ( 𝑧   ∈  𝐴   →  𝑧   ∈  𝐵  )  
						
							7 
								
							 
							nfv ⊢  Ⅎ 𝑧  ( 𝑥   ∈  𝐴   →  𝑥   ∈  𝐵  )  
						
							8 
								
							 
							eleq1w ⊢  ( 𝑧   =  𝑥   →  ( 𝑧   ∈  𝐴   ↔  𝑥   ∈  𝐴  ) )  
						
							9 
								
							 
							eleq1w ⊢  ( 𝑧   =  𝑥   →  ( 𝑧   ∈  𝐵   ↔  𝑥   ∈  𝐵  ) )  
						
							10 
								8  9 
							 
							imbi12d ⊢  ( 𝑧   =  𝑥   →  ( ( 𝑧   ∈  𝐴   →  𝑧   ∈  𝐵  )  ↔  ( 𝑥   ∈  𝐴   →  𝑥   ∈  𝐵  ) ) )  
						
							11 
								6  7  10 
							 
							cbvalv1 ⊢  ( ∀ 𝑧  ( 𝑧   ∈  𝐴   →  𝑧   ∈  𝐵  )  ↔  ∀ 𝑥  ( 𝑥   ∈  𝐴   →  𝑥   ∈  𝐵  ) )  
						
							12 
								3  11 
							 
							bitri ⊢  ( 𝐴   ⊆  𝐵   ↔  ∀ 𝑥  ( 𝑥   ∈  𝐴   →  𝑥   ∈  𝐵  ) )