Step |
Hyp |
Ref |
Expression |
1 |
|
iunxun |
⊢ ∪ 𝑘 ∈ ( ( 1 ..^ 𝑁 ) ∪ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = ( ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∪ ∪ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ) |
2 |
|
fzossnn |
⊢ ( 1 ..^ 𝑁 ) ⊆ ℕ |
3 |
|
undif |
⊢ ( ( 1 ..^ 𝑁 ) ⊆ ℕ ↔ ( ( 1 ..^ 𝑁 ) ∪ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) ) = ℕ ) |
4 |
2 3
|
mpbi |
⊢ ( ( 1 ..^ 𝑁 ) ∪ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) ) = ℕ |
5 |
|
iuneq1 |
⊢ ( ( ( 1 ..^ 𝑁 ) ∪ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) ) = ℕ → ∪ 𝑘 ∈ ( ( 1 ..^ 𝑁 ) ∪ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = ∪ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ) |
6 |
4 5
|
ax-mp |
⊢ ∪ 𝑘 ∈ ( ( 1 ..^ 𝑁 ) ∪ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = ∪ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) |
7 |
|
iftrue |
⊢ ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = 𝐴 ) |
8 |
7
|
iuneq2i |
⊢ ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 |
9 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) → ¬ 𝑘 ∈ ( 1 ..^ 𝑁 ) ) |
10 |
9
|
iffalsed |
⊢ ( 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) → if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = ∅ ) |
11 |
10
|
iuneq2i |
⊢ ∪ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = ∪ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) ∅ |
12 |
|
iun0 |
⊢ ∪ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) ∅ = ∅ |
13 |
11 12
|
eqtri |
⊢ ∪ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = ∅ |
14 |
8 13
|
uneq12i |
⊢ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∪ ∪ 𝑘 ∈ ( ℕ ∖ ( 1 ..^ 𝑁 ) ) if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ) = ( ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 ∪ ∅ ) |
15 |
1 6 14
|
3eqtr3i |
⊢ ∪ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = ( ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 ∪ ∅ ) |
16 |
|
un0 |
⊢ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 ∪ ∅ ) = ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 |
17 |
15 16
|
eqtri |
⊢ ∪ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) = ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 |
18 |
|
0elsiga |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆 ) |
19 |
|
simpr |
⊢ ( ( ( ( ∅ ∈ 𝑆 ∧ ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → 𝐴 ∈ 𝑆 ) ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ..^ 𝑁 ) ) → 𝑘 ∈ ( 1 ..^ 𝑁 ) ) |
20 |
|
simpllr |
⊢ ( ( ( ( ∅ ∈ 𝑆 ∧ ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → 𝐴 ∈ 𝑆 ) ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → 𝐴 ∈ 𝑆 ) ) |
21 |
19 20
|
mpd |
⊢ ( ( ( ( ∅ ∈ 𝑆 ∧ ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → 𝐴 ∈ 𝑆 ) ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ..^ 𝑁 ) ) → 𝐴 ∈ 𝑆 ) |
22 |
|
simplll |
⊢ ( ( ( ( ∅ ∈ 𝑆 ∧ ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → 𝐴 ∈ 𝑆 ) ) ∧ 𝑘 ∈ ℕ ) ∧ ¬ 𝑘 ∈ ( 1 ..^ 𝑁 ) ) → ∅ ∈ 𝑆 ) |
23 |
21 22
|
ifclda |
⊢ ( ( ( ∅ ∈ 𝑆 ∧ ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → 𝐴 ∈ 𝑆 ) ) ∧ 𝑘 ∈ ℕ ) → if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∈ 𝑆 ) |
24 |
23
|
exp31 |
⊢ ( ∅ ∈ 𝑆 → ( ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → 𝐴 ∈ 𝑆 ) → ( 𝑘 ∈ ℕ → if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∈ 𝑆 ) ) ) |
25 |
24
|
ralimdv2 |
⊢ ( ∅ ∈ 𝑆 → ( ∀ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 ∈ 𝑆 → ∀ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∈ 𝑆 ) ) |
26 |
25
|
imp |
⊢ ( ( ∅ ∈ 𝑆 ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 ∈ 𝑆 ) → ∀ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∈ 𝑆 ) |
27 |
18 26
|
sylan |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 ∈ 𝑆 ) → ∀ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∈ 𝑆 ) |
28 |
|
sigaclcu2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∈ 𝑆 ) → ∪ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∈ 𝑆 ) |
29 |
27 28
|
syldan |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 ∈ 𝑆 ) → ∪ 𝑘 ∈ ℕ if ( 𝑘 ∈ ( 1 ..^ 𝑁 ) , 𝐴 , ∅ ) ∈ 𝑆 ) |
30 |
17 29
|
eqeltrrid |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 ∈ 𝑆 ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑁 ) 𝐴 ∈ 𝑆 ) |