| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sigaclcu3.1 |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 2 |
|
sigaclcu3.2 |
⊢ ( 𝜑 → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝑀 ) ) ) |
| 3 |
|
sigaclcu3.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ) → 𝐴 ∈ 𝑆 ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → 𝑁 = ℕ ) |
| 5 |
4
|
iuneq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∪ 𝑘 ∈ 𝑁 𝐴 = ∪ 𝑘 ∈ ℕ 𝐴 ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 7 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∀ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
| 9 |
8 4
|
raleqtrdv |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) |
| 10 |
|
sigaclcu2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) |
| 11 |
6 9 10
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) |
| 12 |
5 11
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → 𝑁 = ( 1 ..^ 𝑀 ) ) |
| 14 |
13
|
iuneq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∪ 𝑘 ∈ 𝑁 𝐴 = ∪ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ) |
| 15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∀ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
| 17 |
16 13
|
raleqtrdv |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ∈ 𝑆 ) |
| 18 |
|
sigaclfu2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ∈ 𝑆 ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ∈ 𝑆 ) |
| 19 |
15 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ∈ 𝑆 ) |
| 20 |
14 19
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
| 21 |
12 20 2
|
mpjaodan |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |