Step |
Hyp |
Ref |
Expression |
1 |
|
sigaclcu3.1 |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
2 |
|
sigaclcu3.2 |
⊢ ( 𝜑 → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝑀 ) ) ) |
3 |
|
sigaclcu3.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ) → 𝐴 ∈ 𝑆 ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → 𝑁 = ℕ ) |
5 |
4
|
iuneq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∪ 𝑘 ∈ 𝑁 𝐴 = ∪ 𝑘 ∈ ℕ 𝐴 ) |
6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
7 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∀ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
9 |
4
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ( ∀ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ↔ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) ) |
10 |
8 9
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) |
11 |
|
sigaclcu2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) |
12 |
6 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ) |
13 |
5 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → 𝑁 = ( 1 ..^ 𝑀 ) ) |
15 |
14
|
iuneq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∪ 𝑘 ∈ 𝑁 𝐴 = ∪ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ) |
16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∀ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
18 |
14
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ( ∀ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ↔ ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ∈ 𝑆 ) ) |
19 |
17 18
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ∈ 𝑆 ) |
20 |
|
sigaclfu2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ∈ 𝑆 ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ∈ 𝑆 ) |
21 |
16 19 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑀 ) 𝐴 ∈ 𝑆 ) |
22 |
15 21
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |
23 |
13 22 2
|
mpjaodan |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝑁 𝐴 ∈ 𝑆 ) |