Metamath Proof Explorer


Theorem sigaclcu3

Description: A sigma-algebra is closed under countable or finite union. (Contributed by Thierry Arnoux, 6-Mar-2017)

Ref Expression
Hypotheses sigaclcu3.1
|- ( ph -> S e. U. ran sigAlgebra )
sigaclcu3.2
|- ( ph -> ( N = NN \/ N = ( 1 ..^ M ) ) )
sigaclcu3.3
|- ( ( ph /\ k e. N ) -> A e. S )
Assertion sigaclcu3
|- ( ph -> U_ k e. N A e. S )

Proof

Step Hyp Ref Expression
1 sigaclcu3.1
 |-  ( ph -> S e. U. ran sigAlgebra )
2 sigaclcu3.2
 |-  ( ph -> ( N = NN \/ N = ( 1 ..^ M ) ) )
3 sigaclcu3.3
 |-  ( ( ph /\ k e. N ) -> A e. S )
4 simpr
 |-  ( ( ph /\ N = NN ) -> N = NN )
5 4 iuneq1d
 |-  ( ( ph /\ N = NN ) -> U_ k e. N A = U_ k e. NN A )
6 1 adantr
 |-  ( ( ph /\ N = NN ) -> S e. U. ran sigAlgebra )
7 3 ralrimiva
 |-  ( ph -> A. k e. N A e. S )
8 7 adantr
 |-  ( ( ph /\ N = NN ) -> A. k e. N A e. S )
9 4 raleqdv
 |-  ( ( ph /\ N = NN ) -> ( A. k e. N A e. S <-> A. k e. NN A e. S ) )
10 8 9 mpbid
 |-  ( ( ph /\ N = NN ) -> A. k e. NN A e. S )
11 sigaclcu2
 |-  ( ( S e. U. ran sigAlgebra /\ A. k e. NN A e. S ) -> U_ k e. NN A e. S )
12 6 10 11 syl2anc
 |-  ( ( ph /\ N = NN ) -> U_ k e. NN A e. S )
13 5 12 eqeltrd
 |-  ( ( ph /\ N = NN ) -> U_ k e. N A e. S )
14 simpr
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> N = ( 1 ..^ M ) )
15 14 iuneq1d
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ k e. N A = U_ k e. ( 1 ..^ M ) A )
16 1 adantr
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> S e. U. ran sigAlgebra )
17 7 adantr
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> A. k e. N A e. S )
18 14 raleqdv
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> ( A. k e. N A e. S <-> A. k e. ( 1 ..^ M ) A e. S ) )
19 17 18 mpbid
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> A. k e. ( 1 ..^ M ) A e. S )
20 sigaclfu2
 |-  ( ( S e. U. ran sigAlgebra /\ A. k e. ( 1 ..^ M ) A e. S ) -> U_ k e. ( 1 ..^ M ) A e. S )
21 16 19 20 syl2anc
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ k e. ( 1 ..^ M ) A e. S )
22 15 21 eqeltrd
 |-  ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ k e. N A e. S )
23 13 22 2 mpjaodan
 |-  ( ph -> U_ k e. N A e. S )