Step |
Hyp |
Ref |
Expression |
1 |
|
sigaclcu3.1 |
|- ( ph -> S e. U. ran sigAlgebra ) |
2 |
|
sigaclcu3.2 |
|- ( ph -> ( N = NN \/ N = ( 1 ..^ M ) ) ) |
3 |
|
sigaclcu3.3 |
|- ( ( ph /\ k e. N ) -> A e. S ) |
4 |
|
simpr |
|- ( ( ph /\ N = NN ) -> N = NN ) |
5 |
4
|
iuneq1d |
|- ( ( ph /\ N = NN ) -> U_ k e. N A = U_ k e. NN A ) |
6 |
1
|
adantr |
|- ( ( ph /\ N = NN ) -> S e. U. ran sigAlgebra ) |
7 |
3
|
ralrimiva |
|- ( ph -> A. k e. N A e. S ) |
8 |
7
|
adantr |
|- ( ( ph /\ N = NN ) -> A. k e. N A e. S ) |
9 |
4
|
raleqdv |
|- ( ( ph /\ N = NN ) -> ( A. k e. N A e. S <-> A. k e. NN A e. S ) ) |
10 |
8 9
|
mpbid |
|- ( ( ph /\ N = NN ) -> A. k e. NN A e. S ) |
11 |
|
sigaclcu2 |
|- ( ( S e. U. ran sigAlgebra /\ A. k e. NN A e. S ) -> U_ k e. NN A e. S ) |
12 |
6 10 11
|
syl2anc |
|- ( ( ph /\ N = NN ) -> U_ k e. NN A e. S ) |
13 |
5 12
|
eqeltrd |
|- ( ( ph /\ N = NN ) -> U_ k e. N A e. S ) |
14 |
|
simpr |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> N = ( 1 ..^ M ) ) |
15 |
14
|
iuneq1d |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ k e. N A = U_ k e. ( 1 ..^ M ) A ) |
16 |
1
|
adantr |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> S e. U. ran sigAlgebra ) |
17 |
7
|
adantr |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> A. k e. N A e. S ) |
18 |
14
|
raleqdv |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> ( A. k e. N A e. S <-> A. k e. ( 1 ..^ M ) A e. S ) ) |
19 |
17 18
|
mpbid |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> A. k e. ( 1 ..^ M ) A e. S ) |
20 |
|
sigaclfu2 |
|- ( ( S e. U. ran sigAlgebra /\ A. k e. ( 1 ..^ M ) A e. S ) -> U_ k e. ( 1 ..^ M ) A e. S ) |
21 |
16 19 20
|
syl2anc |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ k e. ( 1 ..^ M ) A e. S ) |
22 |
15 21
|
eqeltrd |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ k e. N A e. S ) |
23 |
13 22 2
|
mpjaodan |
|- ( ph -> U_ k e. N A e. S ) |