| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sigaclcu3.1 |
|- ( ph -> S e. U. ran sigAlgebra ) |
| 2 |
|
sigaclcu3.2 |
|- ( ph -> ( N = NN \/ N = ( 1 ..^ M ) ) ) |
| 3 |
|
sigaclcu3.3 |
|- ( ( ph /\ k e. N ) -> A e. S ) |
| 4 |
|
simpr |
|- ( ( ph /\ N = NN ) -> N = NN ) |
| 5 |
4
|
iuneq1d |
|- ( ( ph /\ N = NN ) -> U_ k e. N A = U_ k e. NN A ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ N = NN ) -> S e. U. ran sigAlgebra ) |
| 7 |
3
|
ralrimiva |
|- ( ph -> A. k e. N A e. S ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ N = NN ) -> A. k e. N A e. S ) |
| 9 |
8 4
|
raleqtrdv |
|- ( ( ph /\ N = NN ) -> A. k e. NN A e. S ) |
| 10 |
|
sigaclcu2 |
|- ( ( S e. U. ran sigAlgebra /\ A. k e. NN A e. S ) -> U_ k e. NN A e. S ) |
| 11 |
6 9 10
|
syl2anc |
|- ( ( ph /\ N = NN ) -> U_ k e. NN A e. S ) |
| 12 |
5 11
|
eqeltrd |
|- ( ( ph /\ N = NN ) -> U_ k e. N A e. S ) |
| 13 |
|
simpr |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> N = ( 1 ..^ M ) ) |
| 14 |
13
|
iuneq1d |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ k e. N A = U_ k e. ( 1 ..^ M ) A ) |
| 15 |
1
|
adantr |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> S e. U. ran sigAlgebra ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> A. k e. N A e. S ) |
| 17 |
16 13
|
raleqtrdv |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> A. k e. ( 1 ..^ M ) A e. S ) |
| 18 |
|
sigaclfu2 |
|- ( ( S e. U. ran sigAlgebra /\ A. k e. ( 1 ..^ M ) A e. S ) -> U_ k e. ( 1 ..^ M ) A e. S ) |
| 19 |
15 17 18
|
syl2anc |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ k e. ( 1 ..^ M ) A e. S ) |
| 20 |
14 19
|
eqeltrd |
|- ( ( ph /\ N = ( 1 ..^ M ) ) -> U_ k e. N A e. S ) |
| 21 |
12 20 2
|
mpjaodan |
|- ( ph -> U_ k e. N A e. S ) |