| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvssunirn |
⊢ ( sigAlgebra ‘ 𝑂 ) ⊆ ∪ ran sigAlgebra |
| 2 |
1
|
sseli |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 3 |
|
elex |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑆 ∈ V ) |
| 4 |
|
issiga |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
| 5 |
|
elpwuni |
⊢ ( 𝑂 ∈ 𝑆 → ( 𝑆 ⊆ 𝒫 𝑂 ↔ ∪ 𝑆 = 𝑂 ) ) |
| 6 |
5
|
biimpa |
⊢ ( ( 𝑂 ∈ 𝑆 ∧ 𝑆 ⊆ 𝒫 𝑂 ) → ∪ 𝑆 = 𝑂 ) |
| 7 |
|
ancom |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑂 ∧ 𝑂 ∈ 𝑆 ) ↔ ( 𝑂 ∈ 𝑆 ∧ 𝑆 ⊆ 𝒫 𝑂 ) ) |
| 8 |
|
eqcom |
⊢ ( 𝑂 = ∪ 𝑆 ↔ ∪ 𝑆 = 𝑂 ) |
| 9 |
6 7 8
|
3imtr4i |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑂 ∧ 𝑂 ∈ 𝑆 ) → 𝑂 = ∪ 𝑆 ) |
| 10 |
9
|
3ad2antr1 |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → 𝑂 = ∪ 𝑆 ) |
| 11 |
4 10
|
biimtrdi |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 = ∪ 𝑆 ) ) |
| 12 |
3 11
|
mpcom |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 = ∪ 𝑆 ) |
| 13 |
2 12
|
jca |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑂 = ∪ 𝑆 ) ) |
| 14 |
|
elex |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ V ) |
| 15 |
|
isrnsiga |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
| 16 |
15
|
simprbi |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 17 |
|
elpwuni |
⊢ ( 𝑜 ∈ 𝑆 → ( 𝑆 ⊆ 𝒫 𝑜 ↔ ∪ 𝑆 = 𝑜 ) ) |
| 18 |
17
|
biimpa |
⊢ ( ( 𝑜 ∈ 𝑆 ∧ 𝑆 ⊆ 𝒫 𝑜 ) → ∪ 𝑆 = 𝑜 ) |
| 19 |
|
ancom |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ 𝑜 ∈ 𝑆 ) ↔ ( 𝑜 ∈ 𝑆 ∧ 𝑆 ⊆ 𝒫 𝑜 ) ) |
| 20 |
|
eqcom |
⊢ ( 𝑜 = ∪ 𝑆 ↔ ∪ 𝑆 = 𝑜 ) |
| 21 |
18 19 20
|
3imtr4i |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ 𝑜 ∈ 𝑆 ) → 𝑜 = ∪ 𝑆 ) |
| 22 |
21
|
3ad2antr1 |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → 𝑜 = ∪ 𝑆 ) |
| 23 |
|
pweq |
⊢ ( 𝑜 = ∪ 𝑆 → 𝒫 𝑜 = 𝒫 ∪ 𝑆 ) |
| 24 |
23
|
sseq2d |
⊢ ( 𝑜 = ∪ 𝑆 → ( 𝑆 ⊆ 𝒫 𝑜 ↔ 𝑆 ⊆ 𝒫 ∪ 𝑆 ) ) |
| 25 |
|
eleq1 |
⊢ ( 𝑜 = ∪ 𝑆 → ( 𝑜 ∈ 𝑆 ↔ ∪ 𝑆 ∈ 𝑆 ) ) |
| 26 |
|
difeq1 |
⊢ ( 𝑜 = ∪ 𝑆 → ( 𝑜 ∖ 𝑥 ) = ( ∪ 𝑆 ∖ 𝑥 ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑜 = ∪ 𝑆 → ( ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ↔ ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ) ) |
| 28 |
27
|
ralbidv |
⊢ ( 𝑜 = ∪ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ) ) |
| 29 |
25 28
|
3anbi12d |
⊢ ( 𝑜 = ∪ 𝑆 → ( ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ↔ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 30 |
24 29
|
anbi12d |
⊢ ( 𝑜 = ∪ 𝑆 → ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ↔ ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
| 31 |
22 30
|
syl |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ↔ ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
| 32 |
31
|
ibi |
⊢ ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 33 |
32
|
exlimiv |
⊢ ( ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑜 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 34 |
16 33
|
syl |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 35 |
34
|
simprd |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
| 36 |
14 35
|
jca |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ∈ V ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 37 |
|
eleq1 |
⊢ ( 𝑂 = ∪ 𝑆 → ( 𝑂 ∈ 𝑆 ↔ ∪ 𝑆 ∈ 𝑆 ) ) |
| 38 |
|
difeq1 |
⊢ ( 𝑂 = ∪ 𝑆 → ( 𝑂 ∖ 𝑥 ) = ( ∪ 𝑆 ∖ 𝑥 ) ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑂 = ∪ 𝑆 → ( ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ↔ ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ) ) |
| 40 |
39
|
ralbidv |
⊢ ( 𝑂 = ∪ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ) ) |
| 41 |
37 40
|
3anbi12d |
⊢ ( 𝑂 = ∪ 𝑆 → ( ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ↔ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 42 |
41
|
biimprd |
⊢ ( 𝑂 = ∪ 𝑆 → ( ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) → ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 43 |
|
pwuni |
⊢ 𝑆 ⊆ 𝒫 ∪ 𝑆 |
| 44 |
|
pweq |
⊢ ( 𝑂 = ∪ 𝑆 → 𝒫 𝑂 = 𝒫 ∪ 𝑆 ) |
| 45 |
43 44
|
sseqtrrid |
⊢ ( 𝑂 = ∪ 𝑆 → 𝑆 ⊆ 𝒫 𝑂 ) |
| 46 |
42 45
|
jctild |
⊢ ( 𝑂 = ∪ 𝑆 → ( ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) → ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) |
| 47 |
46
|
anim2d |
⊢ ( 𝑂 = ∪ 𝑆 → ( ( 𝑆 ∈ V ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) → ( 𝑆 ∈ V ∧ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) ) ) |
| 48 |
4
|
biimpar |
⊢ ( ( 𝑆 ∈ V ∧ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑂 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) → 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
| 49 |
36 47 48
|
syl56 |
⊢ ( 𝑂 = ∪ 𝑆 → ( 𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ) ) |
| 50 |
49
|
impcom |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑂 = ∪ 𝑆 ) → 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
| 51 |
13 50
|
impbii |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑂 = ∪ 𝑆 ) ) |