Metamath Proof Explorer


Theorem issgon

Description: Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016) (Revised by Thierry Arnoux, 23-Oct-2016)

Ref Expression
Assertion issgon ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆 ) )

Proof

Step Hyp Ref Expression
1 fvssunirn ( sigAlgebra ‘ 𝑂 ) ⊆ ran sigAlgebra
2 1 sseli ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑆 ran sigAlgebra )
3 elex ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑆 ∈ V )
4 issiga ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
5 elpwuni ( 𝑂𝑆 → ( 𝑆 ⊆ 𝒫 𝑂 𝑆 = 𝑂 ) )
6 5 biimpa ( ( 𝑂𝑆𝑆 ⊆ 𝒫 𝑂 ) → 𝑆 = 𝑂 )
7 ancom ( ( 𝑆 ⊆ 𝒫 𝑂𝑂𝑆 ) ↔ ( 𝑂𝑆𝑆 ⊆ 𝒫 𝑂 ) )
8 eqcom ( 𝑂 = 𝑆 𝑆 = 𝑂 )
9 6 7 8 3imtr4i ( ( 𝑆 ⊆ 𝒫 𝑂𝑂𝑆 ) → 𝑂 = 𝑆 )
10 9 3ad2antr1 ( ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) → 𝑂 = 𝑆 )
11 4 10 syl6bi ( 𝑆 ∈ V → ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 = 𝑆 ) )
12 3 11 mpcom ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝑂 = 𝑆 )
13 2 12 jca ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) → ( 𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆 ) )
14 elex ( 𝑆 ran sigAlgebra → 𝑆 ∈ V )
15 isrnsiga ( 𝑆 ran sigAlgebra ↔ ( 𝑆 ∈ V ∧ ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
16 15 simprbi ( 𝑆 ran sigAlgebra → ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
17 elpwuni ( 𝑜𝑆 → ( 𝑆 ⊆ 𝒫 𝑜 𝑆 = 𝑜 ) )
18 17 biimpa ( ( 𝑜𝑆𝑆 ⊆ 𝒫 𝑜 ) → 𝑆 = 𝑜 )
19 ancom ( ( 𝑆 ⊆ 𝒫 𝑜𝑜𝑆 ) ↔ ( 𝑜𝑆𝑆 ⊆ 𝒫 𝑜 ) )
20 eqcom ( 𝑜 = 𝑆 𝑆 = 𝑜 )
21 18 19 20 3imtr4i ( ( 𝑆 ⊆ 𝒫 𝑜𝑜𝑆 ) → 𝑜 = 𝑆 )
22 21 3ad2antr1 ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) → 𝑜 = 𝑆 )
23 pweq ( 𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆 )
24 23 sseq2d ( 𝑜 = 𝑆 → ( 𝑆 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑆 ) )
25 eleq1 ( 𝑜 = 𝑆 → ( 𝑜𝑆 𝑆𝑆 ) )
26 difeq1 ( 𝑜 = 𝑆 → ( 𝑜𝑥 ) = ( 𝑆𝑥 ) )
27 26 eleq1d ( 𝑜 = 𝑆 → ( ( 𝑜𝑥 ) ∈ 𝑆 ↔ ( 𝑆𝑥 ) ∈ 𝑆 ) )
28 27 ralbidv ( 𝑜 = 𝑆 → ( ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ↔ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ) )
29 25 28 3anbi12d ( 𝑜 = 𝑆 → ( ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ↔ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
30 24 29 anbi12d ( 𝑜 = 𝑆 → ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ↔ ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
31 22 30 syl ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) → ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ↔ ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
32 31 ibi ( ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) → ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
33 32 exlimiv ( ∃ 𝑜 ( 𝑆 ⊆ 𝒫 𝑜 ∧ ( 𝑜𝑆 ∧ ∀ 𝑥𝑆 ( 𝑜𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) → ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
34 16 33 syl ( 𝑆 ran sigAlgebra → ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
35 34 simprd ( 𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) )
36 14 35 jca ( 𝑆 ran sigAlgebra → ( 𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
37 eleq1 ( 𝑂 = 𝑆 → ( 𝑂𝑆 𝑆𝑆 ) )
38 difeq1 ( 𝑂 = 𝑆 → ( 𝑂𝑥 ) = ( 𝑆𝑥 ) )
39 38 eleq1d ( 𝑂 = 𝑆 → ( ( 𝑂𝑥 ) ∈ 𝑆 ↔ ( 𝑆𝑥 ) ∈ 𝑆 ) )
40 39 ralbidv ( 𝑂 = 𝑆 → ( ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ↔ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ) )
41 37 40 3anbi12d ( 𝑂 = 𝑆 → ( ( 𝑂𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ↔ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
42 41 biimprd ( 𝑂 = 𝑆 → ( ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) → ( 𝑂𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
43 pwuni 𝑆 ⊆ 𝒫 𝑆
44 pweq ( 𝑂 = 𝑆 → 𝒫 𝑂 = 𝒫 𝑆 )
45 43 44 sseqtrrid ( 𝑂 = 𝑆𝑆 ⊆ 𝒫 𝑂 )
46 42 45 jctild ( 𝑂 = 𝑆 → ( ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) → ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) )
47 46 anim2d ( 𝑂 = 𝑆 → ( ( 𝑆 ∈ V ∧ ( 𝑆𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) → ( 𝑆 ∈ V ∧ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) ) )
48 4 biimpar ( ( 𝑆 ∈ V ∧ ( 𝑆 ⊆ 𝒫 𝑂 ∧ ( 𝑂𝑆 ∧ ∀ 𝑥𝑆 ( 𝑂𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) ) → 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) )
49 36 47 48 syl56 ( 𝑂 = 𝑆 → ( 𝑆 ran sigAlgebra → 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ) )
50 49 impcom ( ( 𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆 ) → 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) )
51 13 50 impbii ( 𝑆 ∈ ( sigAlgebra ‘ 𝑂 ) ↔ ( 𝑆 ran sigAlgebra ∧ 𝑂 = 𝑆 ) )