Metamath Proof Explorer


Theorem issgon

Description: Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016) (Revised by Thierry Arnoux, 23-Oct-2016)

Ref Expression
Assertion issgon S sigAlgebra O S ran sigAlgebra O = S

Proof

Step Hyp Ref Expression
1 fvssunirn sigAlgebra O ran sigAlgebra
2 1 sseli S sigAlgebra O S ran sigAlgebra
3 elex S sigAlgebra O S V
4 issiga S V S sigAlgebra O S 𝒫 O O S x S O x S x 𝒫 S x ω x S
5 elpwuni O S S 𝒫 O S = O
6 5 biimpa O S S 𝒫 O S = O
7 ancom S 𝒫 O O S O S S 𝒫 O
8 eqcom O = S S = O
9 6 7 8 3imtr4i S 𝒫 O O S O = S
10 9 3ad2antr1 S 𝒫 O O S x S O x S x 𝒫 S x ω x S O = S
11 4 10 syl6bi S V S sigAlgebra O O = S
12 3 11 mpcom S sigAlgebra O O = S
13 2 12 jca S sigAlgebra O S ran sigAlgebra O = S
14 elex S ran sigAlgebra S V
15 isrnsiga S ran sigAlgebra S V o S 𝒫 o o S x S o x S x 𝒫 S x ω x S
16 15 simprbi S ran sigAlgebra o S 𝒫 o o S x S o x S x 𝒫 S x ω x S
17 elpwuni o S S 𝒫 o S = o
18 17 biimpa o S S 𝒫 o S = o
19 ancom S 𝒫 o o S o S S 𝒫 o
20 eqcom o = S S = o
21 18 19 20 3imtr4i S 𝒫 o o S o = S
22 21 3ad2antr1 S 𝒫 o o S x S o x S x 𝒫 S x ω x S o = S
23 pweq o = S 𝒫 o = 𝒫 S
24 23 sseq2d o = S S 𝒫 o S 𝒫 S
25 eleq1 o = S o S S S
26 difeq1 o = S o x = S x
27 26 eleq1d o = S o x S S x S
28 27 ralbidv o = S x S o x S x S S x S
29 25 28 3anbi12d o = S o S x S o x S x 𝒫 S x ω x S S S x S S x S x 𝒫 S x ω x S
30 24 29 anbi12d o = S S 𝒫 o o S x S o x S x 𝒫 S x ω x S S 𝒫 S S S x S S x S x 𝒫 S x ω x S
31 22 30 syl S 𝒫 o o S x S o x S x 𝒫 S x ω x S S 𝒫 o o S x S o x S x 𝒫 S x ω x S S 𝒫 S S S x S S x S x 𝒫 S x ω x S
32 31 ibi S 𝒫 o o S x S o x S x 𝒫 S x ω x S S 𝒫 S S S x S S x S x 𝒫 S x ω x S
33 32 exlimiv o S 𝒫 o o S x S o x S x 𝒫 S x ω x S S 𝒫 S S S x S S x S x 𝒫 S x ω x S
34 16 33 syl S ran sigAlgebra S 𝒫 S S S x S S x S x 𝒫 S x ω x S
35 34 simprd S ran sigAlgebra S S x S S x S x 𝒫 S x ω x S
36 14 35 jca S ran sigAlgebra S V S S x S S x S x 𝒫 S x ω x S
37 eleq1 O = S O S S S
38 difeq1 O = S O x = S x
39 38 eleq1d O = S O x S S x S
40 39 ralbidv O = S x S O x S x S S x S
41 37 40 3anbi12d O = S O S x S O x S x 𝒫 S x ω x S S S x S S x S x 𝒫 S x ω x S
42 41 biimprd O = S S S x S S x S x 𝒫 S x ω x S O S x S O x S x 𝒫 S x ω x S
43 pwuni S 𝒫 S
44 pweq O = S 𝒫 O = 𝒫 S
45 43 44 sseqtrrid O = S S 𝒫 O
46 42 45 jctild O = S S S x S S x S x 𝒫 S x ω x S S 𝒫 O O S x S O x S x 𝒫 S x ω x S
47 46 anim2d O = S S V S S x S S x S x 𝒫 S x ω x S S V S 𝒫 O O S x S O x S x 𝒫 S x ω x S
48 4 biimpar S V S 𝒫 O O S x S O x S x 𝒫 S x ω x S S sigAlgebra O
49 36 47 48 syl56 O = S S ran sigAlgebra S sigAlgebra O
50 49 impcom S ran sigAlgebra O = S S sigAlgebra O
51 13 50 impbii S sigAlgebra O S ran sigAlgebra O = S