Step |
Hyp |
Ref |
Expression |
1 |
|
fvssunirn |
|
2 |
1
|
sseli |
|
3 |
|
elex |
|
4 |
|
issiga |
|
5 |
|
elpwuni |
|
6 |
5
|
biimpa |
|
7 |
|
ancom |
|
8 |
|
eqcom |
|
9 |
6 7 8
|
3imtr4i |
|
10 |
9
|
3ad2antr1 |
|
11 |
4 10
|
syl6bi |
|
12 |
3 11
|
mpcom |
|
13 |
2 12
|
jca |
|
14 |
|
elex |
|
15 |
|
isrnsiga |
|
16 |
15
|
simprbi |
|
17 |
|
elpwuni |
|
18 |
17
|
biimpa |
|
19 |
|
ancom |
|
20 |
|
eqcom |
|
21 |
18 19 20
|
3imtr4i |
|
22 |
21
|
3ad2antr1 |
|
23 |
|
pweq |
|
24 |
23
|
sseq2d |
|
25 |
|
eleq1 |
|
26 |
|
difeq1 |
|
27 |
26
|
eleq1d |
|
28 |
27
|
ralbidv |
|
29 |
25 28
|
3anbi12d |
|
30 |
24 29
|
anbi12d |
|
31 |
22 30
|
syl |
|
32 |
31
|
ibi |
|
33 |
32
|
exlimiv |
|
34 |
16 33
|
syl |
|
35 |
34
|
simprd |
|
36 |
14 35
|
jca |
|
37 |
|
eleq1 |
|
38 |
|
difeq1 |
|
39 |
38
|
eleq1d |
|
40 |
39
|
ralbidv |
|
41 |
37 40
|
3anbi12d |
|
42 |
41
|
biimprd |
|
43 |
|
pwuni |
|
44 |
|
pweq |
|
45 |
43 44
|
sseqtrrid |
|
46 |
42 45
|
jctild |
|
47 |
46
|
anim2d |
|
48 |
4
|
biimpar |
|
49 |
36 47 48
|
syl56 |
|
50 |
49
|
impcom |
|
51 |
13 50
|
impbii |
|