Metamath Proof Explorer


Theorem prct

Description: An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016)

Ref Expression
Assertion prct ( ( 𝐴𝑉𝐵𝑊 ) → { 𝐴 , 𝐵 } ≼ ω )

Proof

Step Hyp Ref Expression
1 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
2 snct ( 𝐴𝑉 → { 𝐴 } ≼ ω )
3 snct ( 𝐵𝑊 → { 𝐵 } ≼ ω )
4 unctb ( ( { 𝐴 } ≼ ω ∧ { 𝐵 } ≼ ω ) → ( { 𝐴 } ∪ { 𝐵 } ) ≼ ω )
5 2 3 4 syl2an ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 } ∪ { 𝐵 } ) ≼ ω )
6 1 5 eqbrtrid ( ( 𝐴𝑉𝐵𝑊 ) → { 𝐴 , 𝐵 } ≼ ω )