Description: An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mpocti.1 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 | |
Assertion | mpocti | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpocti.1 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 | |
2 | eqid | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
3 | 2 | fnmpo | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) Fn ( 𝐴 × 𝐵 ) ) |
4 | 1 3 | ax-mp | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) Fn ( 𝐴 × 𝐵 ) |
5 | xpct | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 × 𝐵 ) ≼ ω ) | |
6 | fnct | ⊢ ( ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) Fn ( 𝐴 × 𝐵 ) ∧ ( 𝐴 × 𝐵 ) ≼ ω ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) | |
7 | 4 5 6 | sylancr | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) |