Metamath Proof Explorer


Theorem mpocti

Description: An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017)

Ref Expression
Hypothesis mpocti.1 𝑥𝐴𝑦𝐵 𝐶𝑉
Assertion mpocti ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ≼ ω )

Proof

Step Hyp Ref Expression
1 mpocti.1 𝑥𝐴𝑦𝐵 𝐶𝑉
2 eqid ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
3 2 fnmpo ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) Fn ( 𝐴 × 𝐵 ) )
4 1 3 ax-mp ( 𝑥𝐴 , 𝑦𝐵𝐶 ) Fn ( 𝐴 × 𝐵 )
5 xpct ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 × 𝐵 ) ≼ ω )
6 fnct ( ( ( 𝑥𝐴 , 𝑦𝐵𝐶 ) Fn ( 𝐴 × 𝐵 ) ∧ ( 𝐴 × 𝐵 ) ≼ ω ) → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ≼ ω )
7 4 5 6 sylancr ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ≼ ω )