Metamath Proof Explorer


Theorem mpocti

Description: An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017)

Ref Expression
Hypothesis mpocti.1
|- A. x e. A A. y e. B C e. V
Assertion mpocti
|- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( x e. A , y e. B |-> C ) ~<_ _om )

Proof

Step Hyp Ref Expression
1 mpocti.1
 |-  A. x e. A A. y e. B C e. V
2 eqid
 |-  ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> C )
3 2 fnmpo
 |-  ( A. x e. A A. y e. B C e. V -> ( x e. A , y e. B |-> C ) Fn ( A X. B ) )
4 1 3 ax-mp
 |-  ( x e. A , y e. B |-> C ) Fn ( A X. B )
5 xpct
 |-  ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A X. B ) ~<_ _om )
6 fnct
 |-  ( ( ( x e. A , y e. B |-> C ) Fn ( A X. B ) /\ ( A X. B ) ~<_ _om ) -> ( x e. A , y e. B |-> C ) ~<_ _om )
7 4 5 6 sylancr
 |-  ( ( A ~<_ _om /\ B ~<_ _om ) -> ( x e. A , y e. B |-> C ) ~<_ _om )