Metamath Proof Explorer


Theorem prct

Description: An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016)

Ref Expression
Assertion prct
|- ( ( A e. V /\ B e. W ) -> { A , B } ~<_ _om )

Proof

Step Hyp Ref Expression
1 df-pr
 |-  { A , B } = ( { A } u. { B } )
2 snct
 |-  ( A e. V -> { A } ~<_ _om )
3 snct
 |-  ( B e. W -> { B } ~<_ _om )
4 unctb
 |-  ( ( { A } ~<_ _om /\ { B } ~<_ _om ) -> ( { A } u. { B } ) ~<_ _om )
5 2 3 4 syl2an
 |-  ( ( A e. V /\ B e. W ) -> ( { A } u. { B } ) ~<_ _om )
6 1 5 eqbrtrid
 |-  ( ( A e. V /\ B e. W ) -> { A , B } ~<_ _om )