Description: A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | snct | |- ( A e. V -> { A } ~<_ _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1g | |- ( A e. V -> { A } ~~ 1o ) |
|
2 | peano1 | |- (/) e. _om |
|
3 | 2 | ne0ii | |- _om =/= (/) |
4 | omex | |- _om e. _V |
|
5 | 4 | 0sdom | |- ( (/) ~< _om <-> _om =/= (/) ) |
6 | 3 5 | mpbir | |- (/) ~< _om |
7 | 0sdom1dom | |- ( (/) ~< _om <-> 1o ~<_ _om ) |
|
8 | 6 7 | mpbi | |- 1o ~<_ _om |
9 | endomtr | |- ( ( { A } ~~ 1o /\ 1o ~<_ _om ) -> { A } ~<_ _om ) |
|
10 | 1 8 9 | sylancl | |- ( A e. V -> { A } ~<_ _om ) |