Description: A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snct | |- ( A e. V -> { A } ~<_ _om ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ensn1g |  |-  ( A e. V -> { A } ~~ 1o ) | |
| 2 | peano1 | |- (/) e. _om | |
| 3 | 2 | ne0ii | |- _om =/= (/) | 
| 4 | omex | |- _om e. _V | |
| 5 | 4 | 0sdom | |- ( (/) ~< _om <-> _om =/= (/) ) | 
| 6 | 3 5 | mpbir | |- (/) ~< _om | 
| 7 | 0sdom1dom | |- ( (/) ~< _om <-> 1o ~<_ _om ) | |
| 8 | 6 7 | mpbi | |- 1o ~<_ _om | 
| 9 | endomtr |  |-  ( ( { A } ~~ 1o /\ 1o ~<_ _om ) -> { A } ~<_ _om ) | |
| 10 | 1 8 9 | sylancl |  |-  ( A e. V -> { A } ~<_ _om ) |