Metamath Proof Explorer


Theorem prct

Description: An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016)

Ref Expression
Assertion prct A V B W A B ω

Proof

Step Hyp Ref Expression
1 df-pr A B = A B
2 snct A V A ω
3 snct B W B ω
4 unctb A ω B ω A B ω
5 2 3 4 syl2an A V B W A B ω
6 1 5 eqbrtrid A V B W A B ω