Metamath Proof Explorer


Theorem unelsiga

Description: A sigma-algebra is closed under pairwise unions. (Contributed by Thierry Arnoux, 13-Dec-2016)

Ref Expression
Assertion unelsiga S ran sigAlgebra A S B S A B S

Proof

Step Hyp Ref Expression
1 uniprg A S B S A B = A B
2 1 3adant1 S ran sigAlgebra A S B S A B = A B
3 isrnsigau S ran sigAlgebra S 𝒫 S S S x S S x S x 𝒫 S x ω x S
4 3 simprd S ran sigAlgebra S S x S S x S x 𝒫 S x ω x S
5 4 simp3d S ran sigAlgebra x 𝒫 S x ω x S
6 5 3ad2ant1 S ran sigAlgebra A S B S x 𝒫 S x ω x S
7 prct A S B S A B ω
8 7 3adant1 S ran sigAlgebra A S B S A B ω
9 prelpwi A S B S A B 𝒫 S
10 breq1 x = A B x ω A B ω
11 unieq x = A B x = A B
12 11 eleq1d x = A B x S A B S
13 10 12 imbi12d x = A B x ω x S A B ω A B S
14 13 rspcv A B 𝒫 S x 𝒫 S x ω x S A B ω A B S
15 9 14 syl A S B S x 𝒫 S x ω x S A B ω A B S
16 15 3adant1 S ran sigAlgebra A S B S x 𝒫 S x ω x S A B ω A B S
17 6 8 16 mp2d S ran sigAlgebra A S B S A B S
18 2 17 eqeltrrd S ran sigAlgebra A S B S A B S