Metamath Proof Explorer


Theorem difelsiga

Description: A sigma-algebra is closed under class differences. (Contributed by Thierry Arnoux, 13-Sep-2016)

Ref Expression
Assertion difelsiga S ran sigAlgebra A S B S A B S

Proof

Step Hyp Ref Expression
1 simp2 S ran sigAlgebra A S B S A S
2 elssuni A S A S
3 difin2 A S A B = S B A
4 1 2 3 3syl S ran sigAlgebra A S B S A B = S B A
5 isrnsigau S ran sigAlgebra S 𝒫 S S S x S S x S x 𝒫 S x ω x S
6 5 simprd S ran sigAlgebra S S x S S x S x 𝒫 S x ω x S
7 6 simp2d S ran sigAlgebra x S S x S
8 difeq2 x = B S x = S B
9 8 eleq1d x = B S x S S B S
10 9 rspccva x S S x S B S S B S
11 7 10 sylan S ran sigAlgebra B S S B S
12 11 3adant2 S ran sigAlgebra A S B S S B S
13 intprg S B S A S S B A = S B A
14 12 1 13 syl2anc S ran sigAlgebra A S B S S B A = S B A
15 4 14 eqtr4d S ran sigAlgebra A S B S A B = S B A
16 simp1 S ran sigAlgebra A S B S S ran sigAlgebra
17 prssi S B S A S S B A S
18 12 1 17 syl2anc S ran sigAlgebra A S B S S B A S
19 prex S B A V
20 19 elpw S B A 𝒫 S S B A S
21 18 20 sylibr S ran sigAlgebra A S B S S B A 𝒫 S
22 prct S B S A S S B A ω
23 12 1 22 syl2anc S ran sigAlgebra A S B S S B A ω
24 prnzg S B S S B A
25 12 24 syl S ran sigAlgebra A S B S S B A
26 sigaclci S ran sigAlgebra S B A 𝒫 S S B A ω S B A S B A S
27 16 21 23 25 26 syl22anc S ran sigAlgebra A S B S S B A S
28 15 27 eqeltrd S ran sigAlgebra A S B S A B S