Metamath Proof Explorer


Theorem sigaclci

Description: A sigma-algebra is closed under countable intersections. Deduction version. (Contributed by Thierry Arnoux, 19-Sep-2016)

Ref Expression
Assertion sigaclci S ran sigAlgebra A 𝒫 S A ω A A S

Proof

Step Hyp Ref Expression
1 isrnsigau S ran sigAlgebra S 𝒫 S S S x S S x S x 𝒫 S x ω x S
2 1 simprd S ran sigAlgebra S S x S S x S x 𝒫 S x ω x S
3 2 simp2d S ran sigAlgebra x S S x S
4 3 adantr S ran sigAlgebra A 𝒫 S x S S x S
5 elpwi A 𝒫 S A S
6 ssrexv A S z A y = S z z S y = S z
7 5 6 syl A 𝒫 S z A y = S z z S y = S z
8 7 ss2abdv A 𝒫 S y | z A y = S z y | z S y = S z
9 isrnsigau S ran sigAlgebra S 𝒫 S S S z S S z S z 𝒫 S z ω z S
10 9 simprd S ran sigAlgebra S S z S S z S z 𝒫 S z ω z S
11 10 simp2d S ran sigAlgebra z S S z S
12 uniiunlem z S S z S z S S z S y | z S y = S z S
13 11 12 syl S ran sigAlgebra z S S z S y | z S y = S z S
14 11 13 mpbid S ran sigAlgebra y | z S y = S z S
15 8 14 sylan9ssr S ran sigAlgebra A 𝒫 S y | z A y = S z S
16 abrexexg A 𝒫 S y | z A y = S z V
17 elpwg y | z A y = S z V y | z A y = S z 𝒫 S y | z A y = S z S
18 16 17 syl A 𝒫 S y | z A y = S z 𝒫 S y | z A y = S z S
19 18 adantl S ran sigAlgebra A 𝒫 S y | z A y = S z 𝒫 S y | z A y = S z S
20 15 19 mpbird S ran sigAlgebra A 𝒫 S y | z A y = S z 𝒫 S
21 2 simp3d S ran sigAlgebra x 𝒫 S x ω x S
22 21 adantr S ran sigAlgebra A 𝒫 S x 𝒫 S x ω x S
23 20 22 jca S ran sigAlgebra A 𝒫 S y | z A y = S z 𝒫 S x 𝒫 S x ω x S
24 abrexdom2jm A 𝒫 S y | z A y = S z A
25 domtr y | z A y = S z A A ω y | z A y = S z ω
26 24 25 sylan A 𝒫 S A ω y | z A y = S z ω
27 26 ex A 𝒫 S A ω y | z A y = S z ω
28 27 adantl S ran sigAlgebra A 𝒫 S A ω y | z A y = S z ω
29 breq1 x = y | z A y = S z x ω y | z A y = S z ω
30 unieq x = y | z A y = S z x = y | z A y = S z
31 30 eleq1d x = y | z A y = S z x S y | z A y = S z S
32 29 31 imbi12d x = y | z A y = S z x ω x S y | z A y = S z ω y | z A y = S z S
33 32 rspcva y | z A y = S z 𝒫 S x 𝒫 S x ω x S y | z A y = S z ω y | z A y = S z S
34 23 28 33 sylsyld S ran sigAlgebra A 𝒫 S A ω y | z A y = S z S
35 5 adantl S ran sigAlgebra A 𝒫 S A S
36 11 adantr S ran sigAlgebra A 𝒫 S z S S z S
37 ssralv A S z S S z S z A S z S
38 35 36 37 sylc S ran sigAlgebra A 𝒫 S z A S z S
39 dfiun2g z A S z S z A S z = y | z A y = S z
40 eleq1 z A S z = y | z A y = S z z A S z S y | z A y = S z S
41 38 39 40 3syl S ran sigAlgebra A 𝒫 S z A S z S y | z A y = S z S
42 34 41 sylibrd S ran sigAlgebra A 𝒫 S A ω z A S z S
43 difeq2 x = z A S z S x = S z A S z
44 43 eleq1d x = z A S z S x S S z A S z S
45 44 rspccv x S S x S z A S z S S z A S z S
46 4 42 45 sylsyld S ran sigAlgebra A 𝒫 S A ω S z A S z S
47 46 adantrd S ran sigAlgebra A 𝒫 S A ω A S z A S z S
48 47 imp S ran sigAlgebra A 𝒫 S A ω A S z A S z S
49 simpr S ran sigAlgebra A 𝒫 S A 𝒫 S
50 pwuni S 𝒫 S
51 5 50 sstrdi A 𝒫 S A 𝒫 S
52 iundifdifd A 𝒫 S A A = S z A S z
53 49 51 52 3syl S ran sigAlgebra A 𝒫 S A A = S z A S z
54 53 adantld S ran sigAlgebra A 𝒫 S A ω A A = S z A S z
55 eleq1 A = S z A S z A S S z A S z S
56 54 55 syl6 S ran sigAlgebra A 𝒫 S A ω A A S S z A S z S
57 56 imp S ran sigAlgebra A 𝒫 S A ω A A S S z A S z S
58 48 57 mpbird S ran sigAlgebra A 𝒫 S A ω A A S