Step |
Hyp |
Ref |
Expression |
1 |
|
0elpw |
|
2 |
|
pwidg |
|
3 |
|
prssi |
|
4 |
1 2 3
|
sylancr |
|
5 |
|
prid2g |
|
6 |
|
dif0 |
|
7 |
6 5
|
eqeltrid |
|
8 |
|
difid |
|
9 |
|
0ex |
|
10 |
9
|
prid1 |
|
11 |
10
|
a1i |
|
12 |
8 11
|
eqeltrid |
|
13 |
|
difeq2 |
|
14 |
13
|
eleq1d |
|
15 |
|
difeq2 |
|
16 |
15
|
eleq1d |
|
17 |
14 16
|
ralprg |
|
18 |
9 17
|
mpan |
|
19 |
7 12 18
|
mpbir2and |
|
20 |
|
uni0 |
|
21 |
20 10
|
eqeltri |
|
22 |
9
|
unisn |
|
23 |
22 10
|
eqeltri |
|
24 |
21 23
|
pm3.2i |
|
25 |
|
snex |
|
26 |
9 25
|
pm3.2i |
|
27 |
|
unieq |
|
28 |
27
|
eleq1d |
|
29 |
|
unieq |
|
30 |
29
|
eleq1d |
|
31 |
28 30
|
ralprg |
|
32 |
26 31
|
mp1i |
|
33 |
24 32
|
mpbiri |
|
34 |
|
unisng |
|
35 |
34 5
|
eqeltrd |
|
36 |
|
uniprg |
|
37 |
9 36
|
mpan |
|
38 |
|
uncom |
|
39 |
|
un0 |
|
40 |
38 39
|
eqtri |
|
41 |
37 40
|
eqtrdi |
|
42 |
41 5
|
eqeltrd |
|
43 |
|
snex |
|
44 |
|
prex |
|
45 |
43 44
|
pm3.2i |
|
46 |
|
unieq |
|
47 |
46
|
eleq1d |
|
48 |
|
unieq |
|
49 |
48
|
eleq1d |
|
50 |
47 49
|
ralprg |
|
51 |
45 50
|
mp1i |
|
52 |
35 42 51
|
mpbir2and |
|
53 |
|
ralun |
|
54 |
33 52 53
|
syl2anc |
|
55 |
|
pwpr |
|
56 |
55
|
raleqi |
|
57 |
54 56
|
sylibr |
|
58 |
|
ax-1 |
|
59 |
58
|
ralimi |
|
60 |
57 59
|
syl |
|
61 |
5 19 60
|
3jca |
|
62 |
|
issiga |
|
63 |
44 62
|
ax-mp |
|
64 |
4 61 63
|
sylanbrc |
|