| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0elpw |
|
| 2 |
|
pwidg |
|
| 3 |
|
prssi |
|
| 4 |
1 2 3
|
sylancr |
|
| 5 |
|
prid2g |
|
| 6 |
|
dif0 |
|
| 7 |
6 5
|
eqeltrid |
|
| 8 |
|
difid |
|
| 9 |
|
0ex |
|
| 10 |
9
|
prid1 |
|
| 11 |
10
|
a1i |
|
| 12 |
8 11
|
eqeltrid |
|
| 13 |
|
difeq2 |
|
| 14 |
13
|
eleq1d |
|
| 15 |
|
difeq2 |
|
| 16 |
15
|
eleq1d |
|
| 17 |
14 16
|
ralprg |
|
| 18 |
9 17
|
mpan |
|
| 19 |
7 12 18
|
mpbir2and |
|
| 20 |
|
uni0 |
|
| 21 |
20 10
|
eqeltri |
|
| 22 |
9
|
unisn |
|
| 23 |
22 10
|
eqeltri |
|
| 24 |
21 23
|
pm3.2i |
|
| 25 |
|
snex |
|
| 26 |
9 25
|
pm3.2i |
|
| 27 |
|
unieq |
|
| 28 |
27
|
eleq1d |
|
| 29 |
|
unieq |
|
| 30 |
29
|
eleq1d |
|
| 31 |
28 30
|
ralprg |
|
| 32 |
26 31
|
mp1i |
|
| 33 |
24 32
|
mpbiri |
|
| 34 |
|
unisng |
|
| 35 |
34 5
|
eqeltrd |
|
| 36 |
|
uniprg |
|
| 37 |
9 36
|
mpan |
|
| 38 |
|
uncom |
|
| 39 |
|
un0 |
|
| 40 |
38 39
|
eqtri |
|
| 41 |
37 40
|
eqtrdi |
|
| 42 |
41 5
|
eqeltrd |
|
| 43 |
|
snex |
|
| 44 |
|
prex |
|
| 45 |
43 44
|
pm3.2i |
|
| 46 |
|
unieq |
|
| 47 |
46
|
eleq1d |
|
| 48 |
|
unieq |
|
| 49 |
48
|
eleq1d |
|
| 50 |
47 49
|
ralprg |
|
| 51 |
45 50
|
mp1i |
|
| 52 |
35 42 51
|
mpbir2and |
|
| 53 |
|
ralun |
|
| 54 |
33 52 53
|
syl2anc |
|
| 55 |
|
pwpr |
|
| 56 |
55
|
raleqi |
|
| 57 |
54 56
|
sylibr |
|
| 58 |
|
ax-1 |
|
| 59 |
58
|
ralimi |
|
| 60 |
57 59
|
syl |
|
| 61 |
5 19 60
|
3jca |
|
| 62 |
|
issiga |
|
| 63 |
44 62
|
ax-mp |
|
| 64 |
4 61 63
|
sylanbrc |
|